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 Video forgery, including deletion, duplication, and insertion, threatens multimedia 

integrity, yet CNN-based Video forgery detection models often suffer from 

suboptimal hyperparameter tuning. This study compares the Zebra Optimization 

Algorithm (ZOA) and a Chaotic Sinusoidal variant (CSZOA) for optimizing CNN 

performance in forgery detection. ZOA was chosen for its balanced search 

capability, while Chaotic Sinusoidal mapping was integrated to improve 

population diversity, avoid local optima, and accelerate convergence. The 

framework embedded the optimizer in CNN transfer learning layers to fine-tune 

parameters such as learning rates, Number of filters, filter sizes, and batch size 

configurations. A dataset of 270 forged videos acquired from kaggle.com 

underwent preprocessing through frame extraction, resolution normalization and 

histogram equalization. Results show CSZOA-CNN outperforms ZOA-CNN and 

CNN, achieving 99.51% accuracy, 0.32% False Positive Rate, and 39.86 s 

detection time. These findings highlight the benefit of Chaotic Sinusoidal 

dynamics in enhancing CNN training efficiency and robustness for real-world 

video forgery detection. 
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INTRODUCTION 

The proliferation of digital media and the rapid 

growth of video-sharing platforms have increased 

the risk of content manipulation through advanced 

forgery techniques such as frame deletion, 

duplication, and insertion. Such alterations can be 

used to spread misinformation, fabricate evidence, 

or undermine trust in digital communications. 

Consequently, reliable video forgery detection has 

become a crucial component in multimedia 

forensics, legal investigations, and security-

sensitive applications. 

Deep learning methods, particularly Convolutional 

Neural Networks (CNNs), have shown promising 

results in spatiotemporal feature extraction for 

forgery detection. However, their performance 

largely depends on the optimal configuration of 

hyperparameters such as learning rate, 

convolutional filter size, number of filters and 

network depth (Olayiwola et al, 2023; Oguntoye et 

al., 2025). Conventional gradient-based tuning 

methods may lead to premature convergence or 

suboptimal performance, especially in complex 

search spaces encountered in video analysis tasks. 

Metaheuristic algorithms have emerged as powerful 

alternatives for global optimization due to their 

ability to balance exploration and exploitation 

(Ogundepo et al., 2022; Oguntoye et al, 2023). The 

Zebra Optimization Algorithm (ZOA), inspired by 

the social behavior and defense mechanisms of 

zebras, offers strong search adaptability in high-

dimensional optimization problems. Nevertheless, 

like many swarm-based algorithms, ZOA may 

suffer from limited diversity in later iterations, 
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reducing its ability to avoid local optima. To address 

this, chaotic sinusoidal mapping was integrated into 

ZOA, producing the Chaotic Sinusoidal Zebra 

Optimization Algorithm (CSZOA). This 

modification enhances population diversity, 

improves search dynamics, and accelerates 

convergence toward optimal solutions. 

RELATED WORK 

Video forgery detection has been extensively 

explored through deep learning and forensic feature 

analysis, with approaches differing in network 

architecture, feature extraction strategy, and 

robustness to manipulations. Early methods such as 

Kingra et al. (2017) and Liu and Huang (2017) 

relied on handcrafted spatio-temporal descriptors 

for inter-frame forgery detection, but these 

struggled against complex editing and compression. 

The emergence of deep learning shifted the focus 

toward convolutional neural networks (CNNs) and 

advanced architectures. Afchar et al. (2018) 

introduced MesoNet, a compact CNN optimized for 

facial forgery detection, achieving computational 

efficiency but limited generalization to non-facial 

tampering. Gan et al. (2019) leveraged a VGG-11-

based CNN for object forgery detection in videos, 

enhancing spatial feature learning yet remaining 

vulnerable to temporal inconsistencies. Other 

approaches incorporated domain-specific cues, such 

as Li et al. (2018), who detected eye-blinking 

anomalies, and Ciftci et al. (2020), who utilized 

photoplethysmographic biological signals, both 

achieving high precision but only within 

constrained scenarios. Recurrent architectures, as in 

Güera and Delp (2018), improved temporal 

modeling for DeepFake detection, although training 

costs were significant. More recent works explored 

hybrid and attention mechanisms (Lu et al. 2021) 

with a 3D-attentional inception CNN, achieving 

robust detection but at the expense of higher model 

complexity. Ahmed and Sonuç (2023) integrated 

rationale-augmented CNNs to enhance 

interpretability while maintaining high detection 

accuracy. Some studies targeted residual signal 

analysis, such as El Rai et al. (2020) using noise-

based CNNs, or capsule-based learning, as in 

Nguyen et al. (2019), both offering resilience to 

compression but facing scalability challenges. 

Forgery localization techniques like Jia et al. (2018) 

adopted a coarse-to-fine strategy for copy–move 

detection, excelling in precision but suffering from 

long processing times. Recently, Ugale and 

Midhunchakkaravarthy (2025) proposed a two-

layer hybridized deep CNN classifier for efficient 

video forgery detection, combining multi-level 

feature fusion with deep learning to improve 

accuracy and reduce processing overhead, though 

their method still faced challenges in handling 

highly compressed and adversarially manipulated 

videos. Despite these advancements, current 

methods often encounter trade-offs between 

accuracy, speed, and robustness when addressing 

diverse forgery types (Nguyen and Tran, 2022; 

Oraibi and Radhi, 2022). While recent studies have 

improved feature representation and temporal 

coherence modeling, none have applied 

metaheuristic optimization, specifically the Zebra 

Optimization Algorithm (ZOA) or its chaotic 

variants, to tune CNN parameters for video forgery 

detection. This gap motivates the proposed Chaotic 

Sinusoidal Zebra Optimization Algorithm 

(CSZOA), which integrates ZOA’s exploration–

exploitation balance with Chaotic Sinusoidal 

dynamics to improve CNN training efficiency, 

detection robustness, and adaptability to multiple 

forgery types. 

 

METHODOLOGY 

A dataset of 270 forged videos, encompassing 

deletion, duplication, and insertion manipulations, 

was obtained from Kaggle.com. Preprocessing 

involved frame extraction at a fixed rate, resizing to 
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224 × 224 pixels, histogram equalization, and label 

encoding. A transfer learning-based CNN served as 

the detection backbone, with hyperparameters such 

as learning rate, number of filters, filter size, and 

batch size optimized using the Zebra Optimization 

Algorithm (ZOA) and its Chaotic Sinusoidal variant 

(CSZOA). Figure 1 is the flow diagram for video 

forgery detection using CNN with hyperparameter 

optimization through Zebra Optimization 

Algorithm (ZOA) and Chaotic Sinusoidal ZOA 

(CSZOA). The process includes dataset acquisition, 

preprocessing, CNN model setup, optimization, 

training, and performance evaluation. 

 

Figure 1: Flow diagram for Video Forgery Detection

Dataset and Preprocessing 

The acquired video datasets were split into their 

corresponding frames using the Viola-Jones 

Algorithm in MATLAB. The raw video signals 

from the acquired video data were first pre-

processed before being used as input for feature 

extraction. The pre-processing stage started by 

reading a video file frame by frame, converting each 

frame to grayscale, and applying object detection 

using the pre-trained Viola-Jones object classifier in 

the Algorithm. Another pre-processing technique 

used is contrast enhancement. The Red, Green, and 

Blue (RGB) images are converted into gray images 

using color conversion in Equation (1) (Saravanan, 

2010). 
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Gray(x) = αR + βG + γB          (1) 

Where α, β and γ are the coefficient factors of Red, 

Green and Blue of the images. 

 The dataset consists of 270 videos divided into five 

groups, each containing original and forged videos 

with deletion, duplication, and insertion forgeries. 

Frames were extracted and analyzed using a 10-fold 

cross-validation approach. 

Formulation of the Enhanced Zebra 

Optimization Algorithm 

 The standard Zebra Optimization Algorithm (ZOA) 

exhibits limited localization efficiency, high 

sensitivity to initial conditions, weak local search 

capability, and parameter dependence, often 

resulting in premature convergence (Rana et al., 

2022). These limitations arise from the position 

initialization and objective function evaluation 

mechanisms, defined in the original update rules 

Equation (2–5). 

In the first phase, ZOA updates the i-th zebra’s 

position as: 

𝑥𝑖,𝑗
𝑛𝑒𝑤𝑃1 = 𝑥𝑖,𝑗 + 𝑟. (𝑃𝑍𝑗 − 𝐼. 𝑥𝑖,𝑗)       (2) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤𝑃1 , 𝐹𝑖
𝑛𝑒𝑤𝑃1 <   𝐹𝐼  

𝑋𝐼                     𝑒𝑙𝑠𝑒
        (3) 

where PZ is the pioneer zebra, r∈[0,1], I∈{1,2} and 

PZj is the j-th dimension of PZ, 𝑿𝒊
𝒏𝒆𝒘𝑷𝟏  is the new 

status of the ith zebra based on the first phase, 

𝒙𝒊,𝒋
𝒏𝒆𝒘𝑷𝟏 is its jth dimension value, 𝑭𝒊

𝒏𝒆𝒘𝑷𝟏 is its 

objective function value. The second phase, 

Equation (6-9), handles exploitation and exploration 

for predator-defense strategies. 

Chaotic Sinusoidal Zebra Optimization 

Algorithm (CSZOA) 

To overcome ZOA’s shortcomings, a Chaotic 

Sinusoidal ZOA (CSZOA) was developed by 

integrating a sinusoidal chaotic map into 

initialization, exploration, and exploitation stages. 

The chaotic map enhances population diversity, 

injects controlled randomness, and adaptively 

balances global and local search. 

First phase with chaotic update: 

𝑥𝑖,𝑗
𝑛𝑒𝑤𝑃1 = 𝑥𝑖,𝑗 + 𝑟. (𝑃𝑍𝑗 − 𝐼. 𝑥𝑖,𝑗)   

𝑐𝑥𝑖,𝑗𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝑚𝑜𝑑(𝑎𝑏𝑠(𝑥𝑖,𝑗

𝑛𝑒𝑤𝑃1,   𝑥𝑖,𝑗)

𝑥𝑖,𝑗
𝑛𝑒𝑤𝑃1     

𝑐𝑥𝑖,𝑗𝑓𝑖𝑛𝑎𝑙
 = 𝑎 ∗ 𝑐𝑥𝑖,𝑗𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2  𝑠𝑖𝑛(𝜋 ∗ 𝑐𝑥𝑖,𝑗𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

𝐶𝑋𝑖,𝑗
𝑛𝑒𝑤,𝑃1 = 𝑐𝑥𝑖,𝑗𝑓𝑖𝑛𝑎𝑙

 + 𝑟. (𝑃𝑍𝑗 − 𝐼. 𝑐𝑥𝑖,𝑗𝑓𝑖𝑛𝑎𝑙
 )  (4) 

𝐶𝑋𝑖 = {
𝐶𝑋𝑖

𝑛𝑒𝑤𝑃1 , 𝐹𝑖
𝑛𝑒𝑤𝑃1 <   𝐹𝐼 

𝐶𝑋𝐼                                𝑒𝑙𝑠𝑒
        (5) 

Second phase with chaotic update: 

𝒙𝒊
𝒏𝒆𝒘𝑷𝟐 = 𝒙𝒊,𝒋 + 𝒓. (𝑨𝒁𝒋 − 𝑰. 𝒙𝒊,𝒋)        (6) 

𝒄𝒙𝒊,𝒋𝒊𝒏𝒊𝒕𝒊𝒂𝒍 =
𝑚𝑜𝑑(𝑎𝑏𝑠(𝒙𝒊

𝒏𝒆𝒘,𝑷𝟐
,   𝒙𝒊,𝒋)

𝒙𝒊
𝒏𝒆𝒘𝑷𝟐                      (7) 

𝒄𝒙𝒊,𝒋𝒇𝒊𝒏𝒂𝒍
 = 𝑎 ∗ 𝒄𝑥𝒊,𝒋𝒊𝒏𝒊𝒕𝒊𝒂𝒍

2  𝑠𝑖𝑛(𝜋 ∗ 𝒄𝑥𝒊,𝒋𝒊𝒏𝒊𝒕𝒊𝒂𝒍)      (8) 

𝑪𝑿𝒊
𝒏𝒆𝒘𝑷𝟐 =

{
𝑺𝟏:   𝒄𝒙𝒊,𝒋𝒇𝒊𝒏𝒂𝒍 + 𝑹. (𝟐𝒓 − 𝟏).  (𝟏 −

𝒕

𝑻
) . 𝒄𝒙𝒊,𝒋𝒇𝒊𝒏𝒂𝒍,        𝑷𝒔 ≤   𝟎. 𝟓 

𝑺𝟐:   𝒄𝒙𝒊,𝒋𝒇𝒊𝒏𝒂𝒍
 + 𝒓. (𝑨𝒁𝒋 − 𝑰. 𝒄𝒙𝒊,𝒋𝒇𝒊𝒏𝒂𝒍

 )                                     𝒆𝒍𝒔𝒆

                (9) 

Here, AZ is the attacked zebra, t is the iteration 

index, T is the maximum iteration count, R=0.01, 

and Ps ∈ [0,1] selects the update strategy. The 

chaotic mapping mechanism dynamically adapts 

search parameters according to optimization 

progress, preventing premature convergence and 

improving convergence accuracy. In CNN 

hyperparameter tuning for video forgery detection, 

CSZOA consistently yielded optimal fitness values 

and superior generalization performance. Algorithm 

1 summarizes the procedure.  

CNN Architecture 
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A basic CNN architecture was used, consisting of 

three convolutional layers followed by fully 

connected layers. 

Algorithm 1: Chaotic Sinusoidal Zebra Optimization Algorithm (CSZOA) for CNN Hyperparameter 

Selection 

 
The input to the network comprised preprocessed 

frames from the dataset. The optimization of CNN 

hyperparameters using the Zebra Optimization 

Algorithm (ZOA) and Chaotic Sinusoidal Zebra 

Optimization Algorithm (CSZOA) played a vital 

role in enhancing the performance of the video 

forgery detection model. These algorithms were 

used to fine-tune critical hyperparameters such as 

learning rate, number of filters, filter size, and batch 

size, which directly influence the network’s learning 

efficiency and accuracy. 

CSZOA-CNN at Convolution Layer as Feature 

Extraction 

The optimal convolution layer is the most 

significant portion of the CSZOA-CNN design since 

it extracts specific information from images using a 

variety of optimal convolution kernel sizes. After 

conducting the convolution procedure multiple 

times, a group of feature maps is created from the 

input images. This is expressed as Equation 10 if Fi 

is considered to be the ith layer in the CNN 

architecture. 

    Fi = φ (Fi-1Wcszoai+bi)        (10)

 where Fi and Fi-1 are the feature maps of the current 

network layer and the previous layer, respectively. 

W and bi correspond to the weight and offset vector, 

Inputs: CNN hyperparameters (learning rate, number of filters, filter size, batch size) 

Outputs: Optimal CNN hyperparameters 

1. Initialize parameters: number of iterations T, zebra population size N. 

2. Use a sinusoidal chaotic map to initialize zebra positions and evaluate the objective function. 

3. For t=1:T 

 a. Update Pioneer Zebra (PZ) with chaotic perturbation for exploration. 

 b. For i=1:N    

 Phase 1 – Foraging (Global Search): 

   - Update position: 

    𝑥𝑖,𝑗
𝑛𝑒𝑤𝑃1 =xi,j+ r(PZj−Ixi,j)       

cx i,jinitial = mod(∣x i,j
newP1, xi,j∣)/x i,j

newP1     

cx i,jfinal=a(cxi,j initial)2sin(πcxi,jinitial)  

     𝑪𝑿𝒊,𝒋
𝒏𝒆𝒘𝑷𝟏 =cxi,jfinal+ r(PZj−Icxi,jfinal) 

    - Accept update if Fi
newP1 < Fi   

   Phase 2 – Predator Defense:  

   - Generate Ps ∈ [0,1].  

   - If Ps ≤ 0.5 (Strategy 1 – Exploitation, vs. lion): 

    Update using: 

    xi
newP2=xi,j+r (AZj−Ixi,j)  

    Apply chaotic map as in Phase 1, with exploitation term R(2r−1)(1−t/T).     

 - Else (Strategy 2 – Exploration, vs. other predators): 

    Update as above, with exploration emphasis via chaotic adjustment. 

   - Accept update if Fi
newP2 < Fi  

 c. End for i. 

 d. Save the best candidate solution. 

4. End for t. 

5. Return optimal CNN hyperparameters. 
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respectively, of the ith layer and φ (Fi-1Wcszoai+bi) 

denotes the Rectified Linear Unit (ReLU) function. 

Optimal Pooling layer 

 The minimum pooling layers generated by CSZOA 

are utilized to reduce the spatial dimensions, which 

in turn are expected to reduce the computational 

complexity and also the overfitting issues. The 

output feature on the jth location of the 

corresponding field in the lth pooling layer will be 

estimated with Equation 11. 

𝑋𝑗
𝑙 =down (𝑋𝑗

𝑙−1 , 𝑆𝑐𝑠𝑧𝑜𝑎)     (11) 

where 𝑑𝑜𝑤𝑛(𝑋𝑗
𝑙−1 , 𝑆𝑐𝑠𝑧𝑜𝑎) corresponds to the 

down-sampling function, 𝑋𝑗
𝑙−1 denotes the 

preceding layer feature vector and s stands for 

pooling size. 

CSZOA-CNN at Fully Connected Layers as 

Classification 

 One or more Fully Connected Layers (FCL) after 

the optimal convolution and pooling layers in the 

CSZOA-CNN architecture are used to extract 

features to classify the forgery videos. The softmax 

function is used to conduct class identification with 

prior layer feature extraction. The softmax function 

is expressed in Equation 12. 

     (𝑧) = (3) √𝑍
∗

 (𝑓𝑜𝑟𝑒 = 1, 2, 3)   (12)  

The newly built network can be fine-tuned in order 

to reduce the loss function (E), which is represented 

in Equation 13 by considering the datasets X and 

respective labels Y. 

E(w)= -
1

𝑛
∑  𝑛

𝑥𝑖=1 ∑ [ytklogP (xi = k) + (1 −𝑘
𝑘=1

ytk)log(1 − P(xi = k))]                                  (13) 

 n is the total number of samples, K is the number of 

classes, ytk is the ground truth label for sample i for 

class k, and P(xi=k) is the predicted probability that 

sample iii belongs to class k. In this research, the 

CSZOA algorithm is employed to estimate the 

optimum value of W by optimizing the loss function 

on the target datasets, which is expressed in 

Equation 14, where αcszoa denotes the optimal 

learning rate. 

   Wk = Wk-1 – αcszoa (de 
(𝑊)

𝑑
 W)    (14) 

 

ZOA for CNN Optimization  

 ZOA mimics zebra herd behavior for optimization. 

It was used to tune the CNN's learning rate, filter 

count, filter size, and batch size. ZOA explored 30 

iterations, evaluating different combinations of 

hyperparameters, and achieved its best result at 

iteration 27 with a learning rate of 0.00597, 64 

filters, a filter size of 3, and a batch size of 128. This 

combination resulted in an objective function value 

of 0.0146, indicating a high optimization 

performance. 

CSZOA for CNN Optimization  

 CSZOA enhances ZOA using chaotic sinusoidal 

functions to improve exploration and prevent local 

optima entrapment. CSZOA also underwent 30 

iterations, and its best result was observed at 

iteration 27, but with a lower objective function 

value and faster convergence, similar to ZOA. 

However, the optimal configuration from CSZOA 

was slightly different: a learning rate of 0.00705, 64 

filters, a filter size of 3, and a smaller batch size of 

32. This configuration led to a lower objective 

function value of 0.0129, demonstrating an 

improved capacity to minimize the loss function 

more effectively than ZOA. 

Performance Evaluation 

 The last phase of building the model is to make 

some predictions and evaluate the performance of 

the model and this is done using these parameters: 

False Positive Rate (FPR), Detection Accuracy 

(DA), and Detection Time (DT) as performance 

metrics in comparison with CNN, CNN-ZOA and 

CSZOA-CNN. 
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False Positive Rate (FPR) 

 The FPR, or “Fall-Out”, is the proportion of 

negative cases incorrectly identified as positive 

cases in the data (i.e., the probability that false alerts 

will be raised). It is defined in Equation (15) as the 

total number of negative cases incorrectly identified 

as positive cases divided by the total number of 

negative cases (i.e., normal data). 

  False Positive Rate =  
FP

FP+TN 
              (15) 

Detection Accuracy 

 This measures the total number of correct 

classifications divided by the total number of cases, 

as it is indicated in Equation (16). 

 Detection Accuracy = 
TP+TN

TP+TN+FP+FN
   (16) 

Where: 

True positive TP: If a frame is verified present in a 

dataset and the frame recognition system also 

affirms the presence of the frame, the result of the 

frame recognition system is true positive. 

True Negative TN: If a frame is verified absent in 

a dataset and the frame recognition system also 

affirms the absence of the frame, the result of the 

recognition system is a true negative. 

False Positive FP: If a frame recognition system 

confirms the presence of a frame in a dataset that 

does not really exist, the test result is a false positive. 

False Negative FN: If a frame recognition system 

suggests the absence of a frame in a dataset that does 

exist, the test result is a false negative. 

The sealed samples after attaining a state of secular 

equilibrium were each placed on the detector one 

after the other for analysis and were counted for 

18000 s. An empty container was also counted for 

the same period of time so as to determine the 

background gamma-ray distribution count. The 

activity concentration A (Bq/kg) of each identified 

radionuclide in the sample was estimated using 

Equation 1: 

𝐴 =
𝐶𝑛𝑒𝑡

𝑃𝛾×𝜀×𝑚×𝑡
       (1) 

where Cnet is the net peak count (count/seconds) for 

each radionuclide present in the sample after 

subtracting the background count from the gross 

count, Pγ is the absolute gamma ray emission 

probability of the identified radionuclide, ε is the 

obtained full energy peak efficiency for each 

identified radionuclide, m is the mass (kg) of the 

sample and t is the counting time (s). In addition, the 

Minimum Detectable Activity (MDA) for each 

radionuclide was also calculated using Equation 2: 

  𝑀𝐷𝐴 =
2.71+4.66 (σ)

Pγ×Ɛ×m×t 
       (2) 

where σ is the standard deviation of the background 

collected during time t over the energy range of 

interest. 

Statistical Analysis 

The mean activity concentrations of each 

radionuclide for each category of sample size were 

subjected to One-Way Analysis of Variance 

(ANOVA-1) and Scheffe Pair-Wise Comparisons 

tests to investigate any significant differences in 

their mean value.  

RESULTS AND DISCUSSION 

As summarized in Table 1, CSZOA-CNN 

consistently outperforms the baseline CNN and 

ZOA-CNN models across all evaluated metrics, 

including false positive rate, detection accuracy, and 

computational efficiency. The integration of the 

Chaotic Sinusoidal function into the Zebra 

Optimization Algorithm enables more effective 

hyperparameter tuning, resulting in superior 

generalization across different forgery types and 

video groups. These performance gains highlight 

CSZOA-CNN’s capability to deliver high detection 

reliability while maintaining low processing time, 

making it particularly suitable for real-time and 

resource-constrained video forensic applications. 
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False Positive Rate 

 The experimental results in Figure 2 present the 

False Positive Rates for five video groups evaluated 

using three approaches: CNN, ZOA-CNN, and 

CSZOA-CNN. Each group was tested against three 

forgery types: deletion, duplication, and insertion.
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Table 1: Combined Evaluation Results based on CNN, ZOA-CNN and CSZOA 

 

Metrics Group of Videos Group1 Group2 Group3 Group4 Group5 

Forged Type     Del Dup   Ins  Del  Dup Ins   Del  Dup  Ins Del Dup   Ins Del Dup Ins 

FPR (%) CNN 1.23 1.35 1.49 1.28 1.64 1.92 1.37 1.66 2.10 1.56 1.79 2.29 1.64 1.97 1.91 

ZOA-CNN 0.75 0.71 0.90 0.79 0.87 1.16 0.84 0.87 1.27 0.95 0.94 1.38 1.00 1.04 1.15 

CSZOA-CNN 0.32 0.43 0.45 0.33 0.52 0.58 0.35 0.53 0.63 0.40 0.57 0.69 0.43 0.63 0.58 

SPEC (%) CNN 98.77 98.65 98.51 98.72 98.36 98.08 98.63 98.34 97.90 98.44 98.21 97.71 98.36 98.03 98.09 

ZOA-CNN 99.25 99.29 99.10 99.21 99.13 98.84 99.16 99.13 98.73 99.05 99.06 98.62 99.00 98.96 98.85 

CSZOA-CNN 99.68 99.57 99.55 99.67 99.48 99.42 99.65 99.47 99.37 99.60 99.43 99.31 99.57 99.37 99.42 

 SEN (%) CNN 96.74 96.71 97.88 94.57 96.52 97.80 94.57 95.97 97.78 94.57 95.30 97.52 95.34 96.17 96.84 

ZOA-CNN 97.96 98.21 98.69 96.60 98.11 98.65 96.60 97.81 98.63 96.60 97.45 98.47 97.09 97.92 98.05 

CSZOA-CNN 99.07 98.88 99.31 98.46 98.81 99.28 98.46 98.63 99.28 98.46 98.40 99.19 98.68 98.70 98.97 

PREC (%) CNN 96.85 96.81 97.95 94.74 96.63 97.88 94.74 96.09 97.85 94.74 95.44 97.60 95.50 96.29 96.94 

ZOA-CNN 98.07 98.32 98.76 96.78 98.22 98.72 96.78 97.94 98.71 96.78 97.59 98.56 97.24 98.04 98.16 

CSZOA-CNN 99.18 98.98 99.38 98.64 98.92 99.36 98.64 98.75 99.35 98.64 98.55 99.28 98.83 98.82 99.08 

ACC (%) CNN 98.20 98.07 98.24 97.90 97.75 97.95 97.79 97.63 97.84 97.56 97.39 97.61 97.55 97.38 97.61 

ZOA-CNN 98.89 98.97 98.93 98.70 98.80 98.75 98.63 98.73 98.68 98.49 98.60 98.55 98.49 98.60 98.54 

CSZOA-CNN 99.51 99.36 99.45 99.43 99.26 99.36 99.40 99.22 99.32 99.34 99.14 99.25 99.33 99.14 99.25 

F1-SCORE 

(%) 

CNN 96.79 96.76 97.91 94.66 96.57 97.84 94.66 96.03 97.82 94.66 95.37 97.56 95.42 96.23 96.89 

ZOA-CNN 98.02 98.26 98.73 96.69 98.17 98.68 96.69 97.88 98.67 96.69 97.52 98.51 97.17 97.98 98.10 

CSZOA-CNN 99.13 98.93 99.35 98.55 98.87 99.32 98.55 98.69 99.31 98.55 98.47 99.23 98.76 98.76 99.02 

Time (Sec) CNN 92.20 89.72 91.81 85.71 85.09 86.88 83.84 82.31 84.26 80.24 78.81 81.09 81.59 81.25 83.11 

ZOA-CNN 70.04 69.16 68.95 65.41 64.86 64.64 62.95 63.31 62.56 60.66 59.67 60.04 62.07 60.74 60.83 

CSZOA-CNN 50.27 49.81 49.69 46.32 46.34 47.08 43.99 43.46 43.77 41.01 41.74 40.97 40.97 40.09 39.86 
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Figure 2: Graph of False Positive Rate against Group of Videos based on CNN, ZOA-CNN and CSZOA-CNN 

 

The baseline CNN model recorded the highest false 

positive rates (1.23%–2.29%), indicating a greater 

tendency to misclassify authentic videos as forged. 

Incorporating the Zebra Optimization Algorithm 

(ZOA) reduced these rates to 0.71%–1.38%, 

confirming its effectiveness in enhancing CNN 

hyperparameter selection. This observation is 

consistent with Kaur and Singh (2021), who noted 

that metaheuristic algorithms like ZOA can 

significantly boost CNN performance by identifying 

optimal hyperparameter configurations. The 

CSZOA-CNN model achieved the lowest false 

positive rates (0.32%–0.69%), demonstrating the 

superior discrimination capability provided by 

integrating the Chaotic Sinusoidal map with ZOA. 

Overall Accuracy 

Figure 3 summarizes the overall accuracy of the 

three models across all video groups and forgery 

types. CNN records the lowest accuracy (97.38%–

98.24%) with a downward trend from Group 1 to 

Group 5. ZOA-CNN performs consistently better 

(98.49%–98.97%), while CSZOA-CNN achieves 

the highest and most stable results (99.14%–

99.51%). These outcomes validate that 

incorporating chaotic maps into metaheuristic 

optimization enhances CNN hyperparameter 

tuning, with the Chaotic Sinusoidal function 

enabling more robust generalization across varied 

forgery scenarios.  

Detection Time  

Figure 4 compares the detection times of the three 

models. CNN is the slowest (70.00–92.22 s) despite 

its lower accuracy. ZOA-CNN improves efficiency 

(60.06–70.04 s), while CSZOA-CNN achieves the 

fastest processing (39.94–50.22 s) alongside the 

highest accuracy. The Chaotic Sinusoidal function 

guides ZOA toward hyperparameter configurations 

that maximize detection performance while 

reducing computational complexity, making 

CSZOA-CNN well-suited for real-time video 

forgery detection.
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Figure 2: Mean activity concentrations of each radionuclide according to sample types 

 

Figure 4: Graph of Detection Time against Group of Videos based on CNN, ZOA-CNN and CSZOA-CNN

CONCLUSION 

The CSZOA-CNN model demonstrates strong 

robustness and efficiency in video forgery detection. 

By integrating chaotic dynamics into the Zebra 

Optimization Algorithm, it significantly improves 

CNN training, achieving higher detection accuracy, 

reduced false positive rates, and lower 

computational cost. Future research could 

investigate alternative chaotic maps, extend 

deployment to real-time detection environments, 
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and enhance model interpretability through 

attention mechanisms or advanced visualization 

techniques. 
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