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 Automatic Modulation Recognition (AMR) based on Deep Learning (DL) is an 

efficient technique to improve spectrum utilization by replacing the old way of 

detecting modulation type through the allocation of modulation information in 

the signal frame. However, DL models have the problem of low recognition 

accuracy when dealing with a dataset containing in-phase and quadrature 

channel data. Hence, in this work, the enhancement of DL models that 

automatically recognize different types of modulation techniques with an 

increase in recognition accuracy was carried out. The two utilized dataset were 

RadioML2016.10a and RadioML.2016.10b. Convolutional Neural Network with 

RadioML2016.10a (ECNN-1) and RadioML2016.10b (ECNN-2) and Long 

Short-Term Memory with RadioML2016.10a (ELSTM-1) and RadioML2016.10b 

(ELSTM-2) were implemented in Python 3 using Google Colab. Adam optimizer 

was applied to optimize the hyperparameters of DL models. ECNN-1 and ECNN-

2 have recognition accuracy values of 81% and 88%. The accuracy values 

obtained for ELSTM-1 and ELSTM-2 were 79% and 85%. The ROC AUC score 

for the ECNN-1, ECNN-2, ELSTM-1, and ELSTM-2 were 89.63%, 92.90%, 

90.92%, and 92.81%, respectively. The experimental results showed an 

improvement in modulation recognition accuracy for both enhanced CNN and 

LSTM models. 
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INTRODUCTION 

Automatic Modulation Recognition (AMR) is a 

technique for determining the type of modulation 

of the received radio signals. Modulation wireless 

communication systems have become increasingly 

complicated by the techniques of anti-multipath 

fading, frequency selection, and time-varying 

channels, to mention a few. Accordingly, a more 

accurate and robust signal modulation recognition 

method is required to counteract the upcoming 

harsh environments (Kim et al., 2022). Similarly, 

modulation is carried out by including modulation 

information in each signal frame for the receiver to 

recognize the modulation type involved. The 

spectrum spaces occupied by the extra information 

lead to spectrum wastage and overhead in the 

network protocol. To improve the spectrum 

utilization efficiency in wireless communication, 

Automatic Modulation Recognition (AMR) was 

introduced to the system to identify and classify 

various types of modulation with unknown signals 

from heterogeneous devices. Recognition of the 

modulation scheme is the intermediate step 

between signal detection and demodulation of the 

received signal in communication networks. 

Automatic modulation recognition plays a central 

role in many applications, especially in the military 
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and security sectors (Ansari et al., 2022). AMR 

methods can be classified into two categories: the 

Feature Based (FB) and Likelihood Based (LB) 

methods (Njoku et al., 2021). The likelihood-based 

classification method can theoretically obtain the 

optimal classification performance, but it requires 

substantial prior knowledge and a considerable 

amount of computation. However, the feature-

based method consists of feature extraction and 

classifier construction (Fu et al., 2022). The former 

entails high computational complexity and suffers 

from the ambiguity of the parameters. In the second 

approach, certain features of the signal are 

extracted first, then decisions are made based on 

the characteristics. The latter is less complex 

compared to the first approach.  Therefore, it is 

more convenient to implement the feature-based 

approach in a practical system (Ansari et al., 2022). 

Compared with the featured-based method, the 

likelihood-based method treats both noises and 

channel models which reflect the propagation 

characteristic of signals as prior information (Ma et 

al., 2020). 

Even though the Feature-Based (FB) method is 

based on the experience and knowledge of signal 

feature engineering, it is not suitable in a non-

cooperative environment where any sensitive signal 

information such as frequency deviation, 

transmitting power, and modulation type cannot be 

easily obtained. FB methods pose a drawback of 

generating features that are not representative 

enough. This makes the machine learning classifier 

not discriminative enough when dealing with 

challenging modulation types (Njoku et al., 2021). 

On the contrary, deep learning models have been 

explored extensively due to feature extraction, and 

modulation classification capabilities. However, 

sourcing a large dataset of signals to train the 

models and using a suitable optimizer that can help 

to improve models' performance are amongst the 

major challenges DL models are facing. 

In this work, Adam optimizer was used to enhance 

Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) models for 

recognition and classification of different 

modulation techniques over wireless 

communication channels. Hyperparameters of the 

deep learning models were tuned and the 

performance of the models was evaluated using the 

following evaluation metrics; accuracy, f1-score, 

and Receive Operating Characteristic (ROC)/Area 

Under Curve (AUC) Score. 

Numerous researches have focused on DL-AMR 

(Deep Learning –Automatic Modulation 

Recognition) models in terms of classification 

criteria and employed features. Ramjee et al (2019) 

achieved accuracies of 87.3 % and 81.4% for CNN 

and ResNet respectively on RadioML2016.10b at 

18dB. The model was trained with a large dataset 

but hyperparameter tuning was not applied. Emam 

et al (2020) employed RadioML.2016.10b to 

identify the modulation types of the signal by using 

a combination of CNN, LSTM, and DNN 

architecture, which is called CLDNN 

(Convolutional Long-Short-Term-Deep Neural 

Network). The model included three convolutional 

CNN layers then followed by a single LSTM layer 

with 50 computing units and two fully connected 

DNN layers. The model was compared with the 

individual models of CNN and LSTM, and a 2-3% 

relative improvement in accuracy was achieved on 

the test data set with signal-to-noise ratio (SNR) 

varying from -18dB to 20 dB. The model accuracy 

is low at the lower signal-to-noise ratio (SNR). 

The study is limited to one dataset. Aminfar et al 

(2022) worked on intelligent signal modulation 

recognition whereby k-nearest Neighbor, SVM, 

Decision Tree, and Random Forest were employed 

to identify modulation type based on SNR. The 

dataset was made up of radio waves of various 

waveforms. It was generated synthetically using the 
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AWGN channel model with Watterson fading (for 

ionospheric propagation) and random frequency 

and phase offset. However, the model is not robust, 

only two types of modulation techniques (QPSK 

and PSK) were considered. 

Mohsen et al (2023) also worked on modulation 

recognition by employing the CNN model on 

RadioML2016.10a., the highest accuracy achieved 

is 50% at 11dB. However, this model was not 

trained with sufficient dataset. Referring to the 

reviewed works, there is still room for significant 

improvement in getting accurate models for 

modulation classification techniques and 

recognition through the impact of hyperparameters 

tuning on the modified models to boost the 

accuracy. 

RESEARCH METHODOLOGY 

In this work, recognition and classification of the 

modulation type of received radio signals were 

considered by employing deep learning models that 

will adaptively incorporate features extracted from 

the dataset. Source signals that were considered in 

this research were open source deepsig dataset 

generated by Gnu’s Not Unix (GNU) radio which 

are RadioML2016.10a and RadioML2016.10b. The 

GNU radio library has many in built tools such as 

modulators, encoders, and demodulators. 

Signal Model 

The received baseband complex envelope signal for 

the wireless system can expressed as: 

 ( )   (    )   ( )                            (1)                                                                       

Where  ( ) is the received signal,  (    ) is the 

noise-free baseband complex envelope of the 

received signal,    is the multidimensional vector  

that includes the deterministic unknown channel 

parameters of modulation type   , and  ( ) is the 

instantaneous channel noise at time  . 

Data Acquisition  

The datasets that were employed as the input data 

in this work are RadioML2016.10a and 

RadioML2016.10b. These datasets were packaged 

data generated by the GNU Radio model which 

was stored as an N-dimensional vector using 

numpy and cPickle. This makes them useful for 

training, validating, and testing various deep 

learning-automatic modulation recognition models. 

i. RadioML2016.10a: This dataset was generated 

with Gnu’s Not Unix (GNU) radio and can be 

found in the Kaggle repository. It includes eight 

digital and three analog modulation techniques 

which are: 8PSK, BPSK, CPFSK, GFSK, 

QAM16, QAM64, QPSK, WBFM, PAM4, AM-

DSB, AM-SSB. The dataset has 220,000 samples 

of modulation techniques with twenty different 

signal-to-noise ratio (SNR) values from -20dB to 

18 dB. There are four attributes with the dataset: 

multipath fading, additive white Gaussian Noise, 

sample rate offset, and center frequency offset. 

ii. RadioML2016.10b: This is a larger version of the 

RadioML2016.10a dataset and has 1.2 million 

samples. It includes 10 different types of 

modulation techniques that are used for radio 

signals, eight of which are digital modulations: 

QPSK, QAM16, QAM64, CPFSK, BFSK, BPSK, 

8PSK, and PAM4, and two analog modulations 

AM-DSB and WBFM. Each sample in the dataset 

consists of 128 sampling points where the real 

part and imaginary part represent I and Q signals 

respectively and each modulation type has 20 

different SNRs ranging from -20dB to 18dB. 

Enhancement of Deep Learning (DL) Models for 

Automatic Modulation Recognition (AMR)  

In this work, two different architectures of deep 

learning models were enhanced by applying a 

dropout rate of 0.6 to the network layers, tuning 

epochs to 50 and 60, and applying the ReLU 
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activation function. Convolutional Neural Network 

(CNN) and Long Short-Term Memory (LSTM) 

were trained and tested on RadioML2016.10a and 

RadioML2016.10b datasets. 

Considering Figure 1, the architecture of the 

enhanced CNN model that was applied to the 

RadioML2016.10a and RadioML2016.10b datasets 

contained three CNN layers, three dropout layers, a 

flattened layer, two dense layers, and an activation 

layer. The first convolutional layer was applied 

with the ReLU function and contained the input 

shape. Secondly, another convolutional layer was 

added to enable the model to detect high-level 

features that might have been missed in the first 

layer and was followed by a dropout rate of 0.6. 

Another convolutional layer was added to extract 

more features of the data. This layer was then 

applied with a ReLU function which was followed 

by a dropout rate of 0.6. The flattened layer was 

then used to convert the data into a single 

dimension followed by a dense layer with a dropout 

rate of 0.6. Finally, a dense layer was applied to the 

data with a softmax activation function.  

 

Figure 1: The Architecture of Enhanced CNN 

Model 

Moreover, an Adam optimizer was employed to 

tune the hyperparameters of the model. Equation 

(2) stands for the transfer function of the CNN 

layer. 

      (     ∑          
)        (2) 

Where    output feature map, i is the filter number, 

bj is learned bias,       is kernel,    is input, (*) 

stands for convolution operation and   stands for a 

nonlinear activation function i.e. ReLU.  

Considering Figure 2, the developed architecture of 

the LSTM model which was applied to the 

RadioML2016.10a and RadioML2016.10b datasets 

comprises of 5 layers which are:  two LSTM layers, 

2 dropout layers, and a dense layer. The first LSTM 

layer had an input function as an argument with a 

dropout rate of 0.6. Then followed by a second 

LSTM layer with a dropout rate of 0.6. Finally, a 

dense layer was applied with a softmax activation 

function. Moreover, an Adam optimizer was 

employed to tune the hyperparameters of the 

model. 

Hyperparameters Tuning of the Enhanced 

Models 

The performance of deep learning models was 

improved through the tuning of DL models' 

learning rate, epochs, and ReLU function by 

applying the Adaptive Moment Estimation (Adam) 

optimization algorithm. Considering the Equation 

(3) of the neural network function of the models: 

Figure 2: The Architecture of Enhanced CNN 

Model 

 ( )   (    )             (3) 

Where  ( ) stands for neural network function, 

  represents the activation function,   and   are 

kernel and bias respectively,   stands for input.  

From Equation (3), the weights   and   contained 
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the information learned by CNN and LSTM models 

from the exposure to training data. Equations for 

Adam optimizer are: 

         (    )                 (4)

  

        (    ) 
                (5) 

Where       is the moving average of the gradient, 

   is the moving average of the variance,    and    

represent Beta 1 and Beta 2 respectively,    stands 

for gradient function. 

         
   

√    
                   (6) 

Where      represents the parameters after the 

update,    represents the parameters before the 

update, represents the learning rate,    represent 

the bias-corrected first-moment estimate of 

gradient,    represents the bias-corrected second-

moment estimate of gradients,   stands for epsilon 

which is a small-scale factor to maintains 

numerical stability 

Since the models were implemented using Python 

3, the Adam algorithm from Keras (deep learning 

framework for Python) was employed. The 

optimizer was instantiated with fine-tuning of the 

learning rate to 0.001, beta_1 to 0.99, beta_2 to 

0.999, and epsilon to       to achieve better 

performance before passing it as an argument 

during the model compilation. 

 Implementation of the Enhanced Models 

Considering Figure 3, the enhanced deep learning 

models' code was written in Python 3 using Google 

Colab as a cloud computing platform. Firstly, the 

drive where the dataset was stored was mounted 

since it is a large dataset. Secondly, all the used 

libraries were imported and this was followed by 

the loading of the dataset which was stored in 

pickle format.   The third step was the pre-

processing of the uploaded dataset followed by 

splitting of dataset into 70% training set and 30% 

of the test set.  Then, the CNN model and LSTM 

models were defined with the number of epochs 

followed by compilation. Then the next step was 

the training on the dataset via fitting to train X and 

train Y. To monitor the accuracy of the model on 

data during training, 30% of the training set was set 

apart as a validation set. The loss and accuracy of 

these data were considered. Then, the models were 

evaluated on test data. Finally, performance 

evaluation was carried out on the training dataset 

and testing dataset using accuracy, and ROC AUC 

score. 

RESULT AND DISCUSSION 

The developed DL models were experimentally 

executed using the Keras framework on cloud 

computing software: Google Colab with T4 

Graphical Processing Unit (GPU). Python 

programming language is used for the 

implementation of CNN and LSTM models. The 

Enhanced CNN and LSTM models trained and 

tested on RadioML2016.10a were represented as 

ECNN-1 and ELSTM-1 respectively while the ones 

tested and trained on RadioML2016.10b were 

named ECNN-2 and ELSTM-2 respectively. 

 

Figure 3: The Software Diagram of Enhanced Deep 

Learning Model. 
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Tuning of Adam hyperparameters was carried out 

on training sets that were used to train the models. 

Figure 4 shows the values obtained before using the 

Adam optimizer and after application of it to the 

models. Adam optimizer produced better results 

because using Adam, a separate learning rate is 

maintained for each parameter weight and updated 

individually. Validation and training accuracy of 

the first CNN model. CNN-1, CNN-2, LSTM-1 and 

LSTM-2 have the training accuracy of 48.72%, 

51%, 41% and 55% respectively. The accuracy 

improved of ECNN-1, ECNN-2, ELSTM-1, and 

ELSTM-2 to 53%, 59%, 52%, and 57% 

respectively after tuning of Adam optimizer. 

 

Figure 4: Effect of Adam Optimizer on Models’ 

Accuracy 

As illustrated in Figure 6,  SNR values for each 

modulation for the enhanced LSTM model range 

from -20dB to 18 dB. The achieved highest 

accuracy for ELSTM-1 is 79% at 10dB and 18 dB 

while for ELSTM-2 is 85% at 12dB and 18 dB. 

Also, ECNN-1 and ECNN-2 have the ROC/AUC 

score of 89.63% and 92.90% respectively while 

ECNN-1 and ECNN-2 have ROC/AOC scores of 

90.92% and 92.81% respectively. 

 

Figure 5: Accuracy Versus SNR Values for   the 

ECNN Models 

 

Figure 6: Accuracy Versus SNR Values for the 

ELSTM Models 

Considering Table 1, two enhanced models 

employed in this research were trained with both 

RadioML2016.10a and RadioML2016.10b with the 

application of hyperparameter tuning. The ECNN-2 

model has a higher recognition accuracy using 

RadioML2016.10b at 18dB and ECNN-1 has a 

higher recognition accuracy using 

RadioML2016.10b at 14dB when compared with 

the previous works. In particular, the enhanced 

ECNN-1, ECNN-2, ELSTM-1, and ELSTM-2 

models give 81%, 88%, 79%, and 85% 

respectively.  

CONCLUSION 

In this work, CNN and LSTM architectures are 

presented for recognition of modulation types with 
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high classification accuracy over wide range of 

SNR. These modulation techniques are labeled 

based on RadioML2016.10b dataset into ten classes 

and RadioML2016.10a into eleven classes. The 

experimental results show the effect of enhancing 

the models through the application of the Adam 

optimizer. Significant increment was achieved in 

models’ accuracies after hyperparameters tuning of 

learning rate, epochs and ReLU activation function. 

After the implementation of the enhanced models 

on google colab due to free access to Graphics 

Processing Unit (GPU) and Tensor Processing Unit 

Table 1:  Accuracy Comparison Between the Developed Work and Previous Works  

Reference Model SNR(dB) Dataset Accuracy(%) 

Ramjee et al., (2019) CNN 

ResNet 

18 

18 

RadioML2016.10b 

RadioML2016.10b      

87.3 

81.4 

Mohsen et al., (2023) CNN 14 RadioML2016.10a 50 

Developed work ECNN-1 

ELSTM-1 

ELSTM-2 

ECNN-2 

14 

10 

18 

18 

RadioML2016.10a 

RadioML2016.10a 

RadioML2016.10b 

RadioML.2016.10b 

81 

79 

85 

88 

 

(TPU), the enhanced models were able to achieved 

better performance compared with the previous 

works the ROC AUC score for ECNN-1, ELSTM-

1, and ELSTM-2 are 89.63%, 90.92%, and 92.81%.  

Since the ROC AUC scores for the proposed 

models are all above 90% except the CNN1 score, 

hence, they are all considered to be great models. 

The enhanced models are useful in spectrum 

sensing, satellite communication, and signal 

surveillance. 
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