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ABSTRACT  
The traditional PID controllers have continued to be the most widely implemented control technique in the 
industries for many years because of its structural simplicity and its transparent tuning rules. In this work, 
an analytical design method for PID controllers based on continuous generalized predictive control (CGPC) 
law is proposed. The design method consists of two steps. The first step entails tuning a CGPC system to 
obtain a satisfactory closed-loop response. Thereafter a truncated Maclaurin series is employed to 
approximate the designed CGPC law.  Four simulation examples are used to demonstrate the effectiveness of 
the proposed method. The four examples used are the commonly encountered engineering systems which 
range from a first order plus time delay system, a second order plus time delay system, a third order system 
and a non-minimum phase system which has been known to be very problematic to control. The simulation 
results obtained showed that the proposed CGPC-based PID controllers provided good set-point tracking and 
disturbance rejection and compared favourably well with PID controllers designed by Ziegler-Nichols and 
Direct-Synthesis methods. The controllers are also found to be robust as indicated by the small values of 
computed sensitivity peak. 
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1. INTRODUCTION 
Despite the wide development of advanced control 
methods, the PID controllers are still commonly 
used in industry for its structural simplicity and 
design rules of thumb. The control design problem 
of this research work involves the approximation of 
the continuous time version of the generalised 
predictive control (GPC) algorithm - Continuous 
time generalised predictive control (CGPC) by a 
proportional-integral-derivative (PID) controller 
for the control of commonly encountered 
engineering systems. Since Clarke et al. 
(1987)derived the formula for the GPC controller 
in discrete form and Demircioglu and Gawthrop 
(1988) derived its continuous time version, many 
new predictive control methods based on the GPC 
approach have been presented (Clarke and 
Scattolini, 1991; Demircioglu and Gawthrop, 1991; 
Demirciouglu, 1991) and certain aspects of 
theoretical analyses of the stability and robustness 
of the GPC can be found (Wellsted and Zarrop, 
1991; Camacho and Bordons, 1991; Deng et al., 
2003; Osunleke, 2010). Several successful 
applications in the chemical industry processes 
have been reported, which have clearly highlighted 
the merits of the method.  Very recently, Osunleke 
(2010) incorporated an anti-windup and 

disturbance rejection capability scheme known as 
robust anti-windup generalised predictive control 
into the Demircioglu and Gawthrop algorithm. 
Existing works have shown that a discrete version 
of a generalised predictive control (GPC) based 
PID has been derived. The different authors have 
used different methods in achieving these 
objectives. Cheng et al. (2003) presented a GPC-
based PID with a cost function different from the 
known GPC cost function to include the 
proportional, integral, and derivative constants for 
the PID tuning. Miklovicova and Mrosko (2003) 
presents a GPC-based PID controllers design by 
comparing the GPC closed loop with the PID 
closed loop, deriving the conditions for 
equivalence to obtain the tuning constants. All 
these GPC-PID designs have  only been presented 
in the discrete time domain. 
This work therefore proposes the parameterization 
of PID controllers from CGPC control law using 
truncated Maclaurin series, an approach that will 
henceforth be called CGPC-based PID controllers. 
Four simulation examples will be used to illustrate 
how this method can be used to tune PID 
controllers. It will then be compared with other 
popular classical PID controller tuning rules such 
as Ziegler and Nichols (1964) and Direct synthesis 
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methods to verify the effectiveness of the proposed 
system. 
 
2.     THE CGPC DESIGN ALGORITHM 
Various predictive control algorithms differ in the 
model used for prediction. The CGPC algorithm 
uses transfer function model in the form expressed 
in equation (1) for prediction purposes; 

�(�) =
�(�)

�(�)
�(�) + 

�(�)

�(�)
�(�)                     (1) 

A(s), B(s), C(s) are polynomials in Laplace 
operator, s, with degree n, m, n-1, respectively. Y, 
U, and V are the system’s output, input, and 
disturbance input, respectively. C is usually chosen 
as a design polynomial having all roots in the left 
half plane. 
The detail of CGPC algorithm will not be derived 
here as that is available in Demircioglu and 
Gawthrop(1991)or in its anti-wind up scheme in 
Osunleke (2010). 
The CGPC control law can be obtained by 
minimizing the cost function; 
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T1= minimum prediction horizon 
T2= maximum prediction horizon 
λ= control weighting  
�� =control order 
Note thatT1, T2, � and Nu are all tuning parameters; 
they can be used to achieve the desired closed-loop 
response. 
The minimization of J in equation (2) results in the 
control law: 
�(�) = �[�(�) − �(�)] −

��(�)

�(�)
�(�) −

��(�)

�(�)
�(�)                    (5) 

Where � is a scalar gain, Fc and Gc are 
polynomials. 
The feedback structure of this CGPC control law as 
given by equation (5) is illustrated in Figure 1 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The feedback system of CGPC 
 
3. DERIVATION OF PI/PID CONTROLLER 

FROM CGPC CONTROL LAW 
The block diagram in Fig. 1 for the implementation 
of CGPC control law in a closed loop system can 

easily be converted into a conventional feedback 
system shown in Figure2 through block diagram 
algebra and transformation, thus giving: 

�����(�) =
��(�)�(�)

�(�)�(�) + ��(�)�(�) + ��(�)�(�)
    (6) 

 
 
 
 
 
 
 
 
 

Fig 2: The conventional feedback control system 
 
 
If the derived CGPC control law above is 
approximated by PID controller, we have 

�����(�) ≅ ����(�) = �
���� + ��� + ��

�
�             (7) 

� × �����(�) ≅ ���� + ��� + �� 
Let �(�) = � × �����(�) 
Thus 
�(�) = ���� + ��� + ��                                      (8) 
By expanding f(s) into a Maclaurin series up to the 
second term, we have  
�(0) + ��(0)� + 0.5���(0)�� = �� + ��� + ����    (9) 
By equating coefficients, we have 
�� = �(0)                                                                (10) 
�� = ��(0)                                                              (11) 
�� = 0.5���(0)                                                       (12) 
 
4. SIMULATION RESULTS 
Four simulation examples are used to demonstrate 
the effectiveness of the proposed CGPD-based PID 
controller. In addition to designing PID controllers 
based on CGPC control law for each of the 
examples considered, the controllers were also 
designed using Direct Synthesis (DS), Internal 
Model Control (IMC), Ziegler-Nichols (ZN) and 
Tyreus-Luyben tuning rules. 
For comparison purposes, the following robustness 
and performance metrics were used for assessment. 
 

Robustness Metric: The peak value of the 
sensitivity function, Ms, is chosen as a measure of 
system robustness. This has been used widely by 
various researchers (Chen and Seborg, 2002). 
Recommended values of Ms are typically in the 
range of 1.2 – 2.0. 
 

Performance Metrics: Two indices were used to 
evaluate controller performance. The integrated 
absolute error (IAE) is defined as: 

 ��� = ∫ |�(�) − �(�)|
�

�
��          (13) 

The total variation of the manipulated input u is 
used to evaluate the required control effort. The 
total variation has been widely acclaimed as a good 
measure of the “smoothness” of a control signal, 
and it should be as small as possible. It is given by: 
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�� = �|�(� + 1) − �(�)|

�

���

                      (14) 

 
4.1 Example 1: First Order Plus Time 

Delay System 
Consider the processdescribed by the transfer 
function 

��(�) =
�� �

� + 1
                                              (15) 

Using first order pade approximant, we have 

�� (�) =
−� + 8

�� + 9� + 8
                                            (16) 

The disturbance model for CGPC algorithm is 
chosen as�(�) = � + 1, and the tuning parameters 
are selected as 
T1=0,T2=1,P=1,Ny=3,Nu=1.5. The CGPC control 
law is obtained as: 

�����(�) =
5�� + 50�� + 85� + 40

�� + 19�� + 18�
                (17) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Simulation results for Example 1 
 
CGPC-PID controller was then obtained from (14) 
using equations (9) – (12). 
The controller parameters and the performance 
metrics computed for CGPC law, CGPD-PID, DS-
PID and ZN-PID are summarised in Table 1. All 
the controllers were found to be robust as measured 
by Ms which is less than 2 for all of them. 
Figure 3 shows the simulation results obtained as a 
result of introducing unit step changes in the set 
point (as t=0) and in the disturbance (at t=4 sec). 
CGPC-PID approximated well the CGPC control 
law and provides a faster response than DS-PID 
and ZN-PID, with smoother control signal. The 
DS-PID and ZN-PID responses are a little bit 
oscillatory. They however provide faster responses 
to disturbance than CGPC-PID. The computed IAE 
and TV values corroborate all these claims. 
 

4.2 Example 2: Second Order Plus Time 
Delay System 

Consider a second order plus time delay system 
described in Seborget al.(2004). 

��(�) =
2�� �

(10� + 1)(5� + 1)
                             (18) 

Using optimal model reduction (Taiwo, 1999; 
Osunleke et al., 2007), equation (18) is 
approximated to 

��(�) =
2

57�� + 65�� + 16� + 1
                 (19) 

The disturbance model is chosen as 
�(�) = 0.5�� + �� + �� + � + 1, and the tuning 
parameters selected as 
T1=0,  T2=1,P=1,Ny=3,Nu=1.5. 
The CGPC control law is obtained as 

6 5 4 3 2
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Fig. 4: Simulation results for Example 2 
 
CGPC-PID controller was then obtained from (17) 
using equations (9) – (12). 
The controller parameters and the performance 
metrics computed for CGPC law, CGPC-PID, DS-
PID and ZN-PID are summarised in Table 2. 
CGPC law, DS-PID and CGPC-PID were found to 
be robust while ZN-PID was clearly not. 
Figure 4 shows the simulation results obtained as a 
result of introducing unit step changes in the set 
point (as t=0) and in the disturbance (at t=50sec). 
CGPC-PID approximated well the CGPC control 
law and provide a faster response than DS-PID and 
ZN-PID, with smoother control signal though with 
a little bit of overshoot. The ZN-PID response is 
quite oscillatory. CGPC-PID however degraded a 
little bit in terms of disturbance rejection. The 
computed IAE and TV values corroborate all these 
claims. 
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4.3 Example 3: Non-Minimum Phase 
System 
Consider the non-minimum phase system taken 
from Bequette 

�� (�) = �� (�) =
−9� + 1

(15� + 1)(3� + 1)
       (21) 

The disturbance model for the CGPC algorithm is 
chosenas� = � + 1, while the tuning parametersare 
chosen as 
T1=8,T2=25,P=1,Ny=20,Nu=0.5 
The CGPC control law is obtained as 

�����(�) =
89.98�� + 123.17�� + 37.15� + 1.96

46.71�� + 83.26�� + 37.31�
   (22) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Simulation Result for Example 3 
 
CGPC-PID controller was then obtained from (19) 
using equations (9) – (12). 
The controller parameters and the performance 
metrics computed for CGPC law, CGPD-PID, DS-
PID and ZN-PID are summarised in Table 3. All 
the controllers were found to be robust as measured 
by Ms which is less than 2 for all of them.  
Figure 5 shows the simulation results obtained as a 
result of introducing unit step changes in the set 
point (as t=0) and in the disturbance (at t=100 sec). 
CGPC-PID approximated well the CGPC control 
law and provide a faster response than DS-PID and 
ZN-PID, with smoother control signal. ZN-PID 
however performed better than all of them in terms 
of disturbance rejection. The computed IAE and 
TV values support all these claims. 
 
 
 

4.4 Example 4: Laboratory-Scale 
Experimental Three Tank System 

Consider a laboratory scale experimental three tank 
system housed in the process systems engineering 
laboratory. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6: Laboratory-Scale Experimental Three-Tank-
System 
 

The Three tank system is originally designed as a 
two-inputs two outputs system. With pump 2 
turned off and level 2 considered as the only 
controlled variable, the system can be considered 
as a Single input single output system. The process 
model is thus obtained as: 

�� (�) =
�ℎ�

���
=

0.216

5.55 × 10��� + 3.42 × 10��� + 497.39� + 1
  (23) 

The disturbance model for the CGPC algorithm is 
chosen as� = �� + �� + �� + � + 1, and the tuning 
parameters are T1=0, T2=500,P=1,Ny=12,Nu=6. 
The CGPC control law is obtained as 
�����(�) = 
88.4�� + 93.9�� + 93.9�� + 93.9�� + 5.5�� + 0.08� + 0.00016

�� + 1.1�� + 1.1�� + 1.1�� + 0.08�� + 0.0024�
  (24) 

 
 

 
 

Fig. 7: Simulation Result for Example 4
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Table 1: PID controller settings for Example 1: First Order Plus Delay System 

Tuning 
methods 

    Set-Point Disturbance 
�� �� �� Ms IAE TV IAE TV 

CGPC-PID 2.38 2.22 0.073 1.22 0.5015 2.5573 0.4345 1.08 
CGPC - - - 1.60 0.45 4.0746 0.4357 1.00 

DS-PID(��=2.8) 3.0856 4.2338 0.2565 1.14 0.5806 0.261 0.2362 1.30 

ZN-PID 4.1526 9.051 0.4763 1.25 0.6539 12.08 0.1307 2.35 
 

Table 2: PID controller settings for Example 2: Second Order Plus Delay System 

Tuning methods     Set-point Disturbance 
�� �� �� Ms IAE TV IAE TV 

CGPC-PID 3.76 0.25 6.35 2.08 9.86 7.78 3.93 1.75 
CGPC - - - 1.32 11.88 12.00 4.03 1.39 

DS-PID(�� =0.5) 5 0.333 16.65 1.9 9.51 11.16 3.04 2.63 

ZN-PID 4.72 0.8096 6.8912 2.365 10.15 16.74 1.75 2.98 
 

Table 3: PID controller settings for Example 3: Non-Minimum Phase System 
Tuning 

methods 
    Set-Point Disturbance 

�� �� �� Ms IAE TV IAE TV 
CGPC-PID 0.879 0.0524 0.637 0.7 19.88 2.1902 23.34 1.8611 
CGPC - - - 1.95 19.04 2.7671 23.43 1.9199 
DS-PID(��=5) 0.947 0.0526 2.3684 0.125 19.60 3.2630 23.29 3.0127 

ZN-PID 1.2 0.0988 3.6431 0.173 21.34 9.5058 17.44 6.0517 
 

Table 4: PID controller settings for Example 4: Laboratory Scale Three-Tank-System 

Tuning 
methods 

    Set-Point Disturbance 
�� �� �� Ms IAE TV IAE TV 

CGPC-PID 16.4 0.03712 153.5 3.2 168.4 16.26 255.9 36.33 
CGPC - - - 1.45 114.6 101.68 146.5 72.07 
ZN-PID 80.65 0.7676 2118.70 2.3 231.1 245.74 115.6 225.5 
TL-PID 61.1 0.1322 2038.3 2.325 128.2 87.01 89.8 100.9 

 

CGPC-PID controller was then obtained from (21) using 
equations (9) – (12). 
The controller parameters and the performance metrics 
computed for CGPC law, CGPD-PID, TL-PID and ZN-
PID are summarised in Table 4. CGPC law is found to 
have a lower value of Ms than others.  
Figure 5 shows the simulation results obtained as a 
result of implementing the controllers on the nonlinear 
SIMULINK model of the system. Step changes in the 
set point at t=0 and in the disturbance at t=1000 seconds 
simulated as a leak of size 30 cm3/sec in tank 1 and 
sustained for 100 seconds, were introduced. CGPC-PID 
approximated well the CGPC control law and provide a 
faster response than ZN-PID which was quite 
oscillatory. 

CONCLUSION 
We have presented in this work an analytical method of 
designing CGPC-based PID controllers. The comparison 
made in simulation between the original CGPC law and 
the approximated PID controller showed that Maclaurin 
series give a good approximation of the CGPC law. The 
simulation results obtained on application of the 

proposed design method on the four selected examples 
and comparing with DC-PID, T-L PID and Z-N PID 
controllers showed the effectiveness of the method. 
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