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ABSTRACT 
In this paper, we presented a reliable modification of the Laplace Decomposition Method (LDM) for 

solving non linear singular second order initial value problems. The method is used to obtain the exact solutions 
of the nonlinear singular initial value problems. The validity of the method is verified by using nonlinear Lane-
Emden type differential equations as an example to show the effectiveness of the method. 
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1. INTRODUCTION 

Most of the physical phenomena are nonlinear in 

nature and many analytical and numerical methods 

have been developed by various scientists to cope 

with the nonlinearity of such problems. In reality, the 

Laplace transform is one of the few methods that can 

be useful to linear systems with periodic or 

discontinuous driving inputs. In spite of its great 

usefulness in solving linear problems however, the 

Laplace is totally incapable of handling nonlinear 

equations because of the difficulties that are caused 

by the nonlinear terms. 

Lane-Emden type IVPs has many applications in 

Mathematics and astrophysics [1], [2]. The nonlinear 

Lane-Emden type problem of the form 

   xgyxfy
x

y  ,
2 10  x                   (1)

 

Subject to the conditions 

  

 (2) 

Where  yxf ,  is a continuous real valued function.

 

 The solution of Lane-Emden equation is numerically 

challenging because of the singularity behavior at 

origin. The approximate solutions of the Lane-Emden 

equation is given by Adomian decomposition, 

homotopy perturbation, Variational iteration, 

Differential transform [4]-[12] and so on. Laplace 

Adomian Decomposition Method  (LADM) proposed 

in [13] and [14] is successfully used to find solutions 

of  differential equations [15]-[19]. We use this 

method to obtain the exact solutions for nonlinear 

equations but it generates noise term for 

inhomogeneous differential equations [20]. Hussain 

[21] found a modified method which increases the 

convergence of solution when compared with 

Laplace Adomian Decomposition Method (LADM). 

In this paper, we will use Modified Laplace 

Decomposition Method (MLDM) obtain the exact or 

approximate analytic solutions of the nonlinear Lane-

Emden type equations. 

2. Analysis of the Method 

Modified Laplace Decomposition Method 

    ByAy  0,0 '
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Here, we will briefly discuss the procedure of the 

Modified Laplace Decomposition Method (MLDM) 

for solution of nonlinear Lane-Emden equation (1) 

    10,,
2

xxgyxfy
x

y 

 
 Multiplying through by xand then taking the Laplace 

transform on both sides gives:

 
      0,2  xxgyxxfLyLyxL

  
    

(3) 

         0,02  xxgyxxfLyyLs
 

     (4) 

Where L is the operator of the Laplace transform 

operator and it is define as  

   dxxfexL sx





0   

 

   
ds

ydL
yL   

We decompose  yxf ,  into two parts.

 

       xyNxyMyxf ,  

Where      xyNandxyM  denote the 

linear term and the nonlinear term respectively. 

The MLDM gives a solution   xy  an infinite series 

as: 

   





0n

n xyxy      (5) 

and the nonlinear term takes the form of infinite 

series of the Adomian polynomials nA  of the form: 

   xAxyN
n

n





0

}{

   (6) 

Where nA  are the Adomian polynomials and it can 

be obtained by the formula  

,2,1,0
!

1

0

















 





nuN
d

d

n
A

n
n

n

n

n

n 


           (7) 

Therefore, 

  0uNAn    

 011 uNuA 
 

   0

2

1022
!2

1
uNuuNuA 

      (8) 

     0

3

1021033
!3

1
uNuuNuuuNuA 

 

 

Substituting (7), (8) into (4) and applying the 

linearity property of Laplace transform, we have 

           00
00

2 








 






 n
nn

n
n xxAxyxRLxxgLyxyLs

                              (9) 

In general, the recursive relation is given by: 

       
        ,

,0
2

1

22
0

xxAxyxMLsxyL

xxgLsysxyL

nnn 








   (10) 

Integrating (10) from 0 to s, we have 

        
        dsxxAxyxMLsxyL

dsxxgLsysxyL

nnn 












2
1

22
0 ,0

         (11) 

Taking the inverse Laplace transform of (11), we 

have 

          

        ,
,0

21
1

221
0

dsxxAxyxMLsLxy

xHdsxxgLsysLxy

nnn 












    (12) 
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Where  xH arises from the source term and the 

given initial condition. The choice of (12) as the 

initial solution produces noise oscillation in iteration 

process. To overcome this problem, we assume that 

 xH can be decomposed as  

     xHxHxH 10 
   (13) 

Instead of (12), we suggest the following 

modification: 

   
          
      ,)(

,

,

21
1

21
11

00

dsxxAxyxMLsLxy

dsxxAxyxMLsLxHxy

xHxy

nnn

nn













  (14) 

The above solution by MLDM depends on  xH 0

and  xH1 . 

 

3. Numerical examples 

Modified Laplace Decomposition Method is 

illustrated by the following examples. 

Example 1 

Consider a nonlinear Lane-Emden fowler equation  

) 

S

ubject to the initial conditions  

  

  (16) 

Applying the MLDM and initial conditions (16), we 

have 

   yxyxyLyLs ln4612  
, 

and then, we obtain the recursive relations as 

 
 
   11

2

2
0

46 








nnn xAxyLsyL

syL


   (17) 

Where the nonlinear operator   yyyN ln  
is 

decomposed as in (8) in terms of the Adomian 

polynomials.   yyyN ln are computed as follow: 

 

 
   

     

       
2

0

3

1
030

3

1021033

0

2

1
020

2

1022

01011

0000

!3
ln1

!3

1

!2
ln1

2

1

ln1

ln

y

y
yyyNyyNyyyNyA

y

y
yyyNyyNyA

yyyNyA

yyyNA









                                       (18) 

Integrating both sides of (17) and then taking the 

inverse Laplace transform we have 

   
    












dsxAxyLsLxy

dssLxy

nnn 11
21

21
0

46
 

                     (19) 

By substituting (16) into (19) we obtain the series 

solution as 

  

  

  

   84
433

21
4

63
322

21
3

42
211

21
2

2
100

21
1

0

!4

1
,46

!3

1
,46

!2

1
,46

,46

1

xydsxAxyLsLy

xydsxAxyLsLy

xydsxAxyLsLy

xydsxAxyLsLy

y



































     (20) 

Hence the solution is given below in the series form 

     (21) 

 

The exact solution is  
2xety 

   
     (22) 

  0ln46
2

 yyyy
x

y 

    00,10 '  yy

  ....
!4

1

!3

1

!2

1
1 8463422  xxxxxy 



Olubanwo O.O.et.al./LAUTECH Journal of Engineering and Technology 9 (1) 2015: 105 –111 
 

108 
 

 

Example 2 

Consider a nonlinear Lane-Emden differential 

equation 

10,024
2

2 






  xeey
x

y
y

y

 

      (23)
 

Subject to initial conditions 

     0000  yy    (24) 

The exact solution is   )1ln(2 2xxy 
 

Applying the MLDM and initial conditions (24), we 

have 

  024 22 















 
y

y eexLyLs
  (25) 

and then, we obtain the recursive relation as 

 

   1
2

0

4

,0






nn xALsyL

yL
   (26) 

Where the nonlinear operator   22
y

y eeyN 
 
is 

decomposed as in (8) in terms of the Adomian 

polynomials.   22
y

y eeyN  are computed as 

follow: 



,
8

1
2

!34

1
2

2

1
2

,
4

1
2

!22

1
2

,
2

1
2

2

2

3

12
21

2
33

2

2

12
22

2
11

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0




























































y
y

y
y

y
y

y
y

y
y

y
y

y
y

ee
y

eeyyeeyA

ee
y

eeyA

eeyA

eeA

 

     (27) 

Integrating both sides of (26) and then taking the 

inverse Laplace transform, we have 

 

      




dsxALsLxy

yyL

nn 1
21

00

4

0,0
  (28) 

Using the initial conditions and (27), we have these 

results 

 

8
4

6
3

4
2

2
1

0

2

1

3

2

2

0

xy

xy

xy

xy

y











    (29) 

Hence the solution is given below in the series form 

  







 8642

4

1

3

1

2

1
2 xxxxxy

 

                     (30) 

Hence the exact equation has the form 

  )1ln(2 2xxy     (31) 

Example 3 

Consider nonlinear Lane-Emden equation 

  0,06
2 4  txy
x

y   (32) 

Subject to initial conditions 

    0000  yy     (33) 

Applying the MLDM and initial conditions (33), we 

have 

      06 532  xxLxyLyLs
   (34) 

The recursive relation is obtained as  
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   

     
   ,

,

,6

1
32

5
1

32
1

2
0















nn

n

xyLsyL

xLxyLsyL

xLsyL

     (35) 

Integrating both sides of (35) and then taking the 

inverse Laplace transform, we have 

 

 
  1,0,0

0,0

,,
2

11

2
030

nyyL

yyL

xy
s

yL

nn 





   (36) 

Example 4. 

Richardson’s theory of thermionic currents 

Consider the nonlinear differential equation of 
Richardson’s theory of thermionic currents 

0
2

  yey
x

y
    (37) 

Subjects to the initial conditions 

    0000  yy     (38) 

Applying the MLDM and initial conditions (38), we 

have 

    02  nxALyLs
   (39) 

The recursive relation is obtained as 

   
   1

2

2
0 0










nn xALsyL

ysyL
    (40) 

Where the nonlinear operator   yeyN 
 

is 

decomposed as in (8) in terms of the Adomian 

polynomials.   yeyN  are computed as follow: 

 
 

   

      000

00

0

0

!3!3

1

!22

1

3

1
2130

3

1021033

2

1
20

2

1022

1011

00

yyy

yy

y

y

e
y

eyyeyyNyyNyyyNyA

e
y

eyyNyyNyA

eyyNyA

eyNA

















  

(41) 
Integrating both sides of (40) and then taking the 

inverse Laplace transform, we have 

  
  dsxALsLy

ysLy

nn 1
21

21
0 ,00












   (42) 

Using the initial conditions and (41), we have 

  

  

   6
32

21
3

4
21

21
2

2
10

21
1

0

1890

1
,

120

1
,

6

1
,

,0

xydsxALsLy

xydsxALsLy

xydsxALsLy

y



















    (43) 

Hence we obtain series solution as 

  62

1890

1

120

1

6

1
xxxxy     (44) 

 

Example 5 

Isothermal gas spheres equation 

Isothermal gas equation are modeled by 

0
2

 yey
x

y
    (45) 

Subjects to the initial conditions 

    0000  yy     (46) 

Applying the MLDM and initial conditions (38), we 

have 

    02  nxALyLs
   (47) 
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The recursive relation is obtained as 

   
   1

2

2
0 0










nn xALsyL

ysyL
    (48) 

Where the nonlinear operator   yeyN 
 

is 

decomposed as in (8) in terms of the Adomian 

polynomials.   yeyN  are computed as follow: 

 
 

   

      000

00

0

0

!3!3

1

!22

1

3

1
2130

3

1021033

2

1
20

2

1022

1011

00

yyy

yy

y

y

e
y

eyyeyyNyyNyyyNyA

e
y

eyyNyyNyA

eyyNyA

eyNA









 

  (49) 

Integrating both sides of (48) and then taking the 

inverse Laplace transform, we have 

  
  dsxALsLy

ysLy

nn 1
21

21
0 ,00












   (50) 

Using the initial conditions and (41), we have 

  

  

   6
32

21
3

4
21

21
2

2
10

21
1

0

1890

1
,

120

1
,

6

1
,

,0

xydsxALsLy

xydsxALsLy

xydsxALsLy

y





















  (51) 

Hence we obtain series solution as 

   62

1890

1

120

1

6

1
xxxxy     (52) 

4. Conclusion 

In this paper, we have successfully applied the 

modified Laplace Decomposition Method (MLDM) 

to obtain the exact solutions for nonlinear singular 

second order initial value problems. It is 

demonstrated that the presented approach can 

accelerate the rapid convergence of series solution 

when compared with other methods. It is shown that 

MLDM is simple and easy to use and produce 

reliable result. 
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