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 The winding inductances of a double stator machine are analyzed in this study. 

Finite element analysis is deployed using MAXWELL-ANSYS software. It is 

revealed that the machines that have an even number of poles that is, 10-pole and 

14-pole, exhibited a larger amount of both self and mutual inductance values. The 

10-pole and 14-pole machine types have relatively larger direct-axis inductance 

compared to that of their 11-pole and 13-pole counterparts; nevertheless, with 

comparably lower quadrature-axis inductances. The machine types that have an 

odd number of poles seem to possess lesser sensitivity to their inductance-current 

relation, unlike its equivalent even number of pole categories. The predicted peak 

magnetic axis force value on the rotor of 10-pole, 11-pole, 13-pole and 14-pole 

machine varieties at 30 W is 0.18 N, 87.60 N, 10.95 N and 0.13 N, respectively. 

This implies that the 11-pole and 13-pole machine types would have a higher 

amount of noise and vibration and possible degradation than their equivalent 10-

pole and 14-pole ones.  
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INTRODUCTION 

Winding inductances of a machine play a major role 

in its resulting performance indices and 

characteristics. Therefore, finite element 

predictions of a machine’s inductances, including 

the axes inductance as well as the mutual and self-

inductances of the machine are studied in this 

research; to analyze its effect on the machine’s 

output values, particularly, as it relates to its pole 

number modifications.    

A conventional permanent magnet (PM) machine is 

designed such that the relative difference between 

its axes inductance is huge to account for adequate 

reluctance torque in the machine (Vukotić et al., 

2020). This dependency on axes inductance is 

termed as its saliency effect. On the contrary, the 

investigated dual stator machine in this current 

study naturally has almost zero value difference 

between its axes inductance and hence, with a 

consequential negligible reluctance torque worth. A 

machine’s saliency profile is often influenced by its 

pole number (Thomas et al., 2009) and also by its 

number of slots and winding pattern (Ni et al., 

2014); this may consequently result in mechanical 

instability in the system. Mechanical instability 

could also lead to a number of issues on the machine 

such as low reluctance torque, and increased 

electromechanical losses, among others (Yamazaki 

and Takeuchi, 2017).  

It is worth noting that the resultant winding 

inductance values of an electrical machine are 

customarily affected by its supplied current 

magnitude. These current magnitudes particularly, 

in different phases and axes would certainly impact 

LAUTECH Journal of Engineering and Technology 18 (2) 2024: 175-181 

10.36108/laujet/4202.81.0261 

mailto:awahchukwuemeka@gmail.com
mailto:awahchukwuemeka@gmail.com


Awah, C. C. et al. /LAUTECH Journal of Engineering and Technology 18 (2) 2024: 175-181 
 

176 

the resulting inductance characteristics of a 

machine; thereby, giving rise to cross-coupling non-

linearity, as noted by Ibrahim et al. (2017) and 

(Mingardi et al., 2017). The knowledge and accurate 

prediction of winding axis inductances is critical in 

achieving optimal control of electrical machines, as 

provided in (Jang et al., 2011) and (Hu et al., 2018), 

amongst its other general impacts.  

The fault-tolerance capability and thus, reliability of 

a machine is dependent upon its winding inductance 

(Zhao et al., 2021); nevertheless, these good 

qualities could be boosted by deploying multi-phase 

procedures and systems, as opined by Thomas et al. 

(2009) and Zhang et al. (2019). 

Constructional or geometric model modifications 

and proper optimization application could be 

adopted to realize reasonable inductance values 

from an electrical device (Hu et al., 2021). Research 

has shown that winding inductances could be 

estimated faster using an analytical modelling 

approach compared to the use of finite element 

analysis (FEA) (Dutta et al., 2012, Lee et al., 2011 

); though, with slightly lesser accuracy. Note that 

FEA technique is implemented in this investigation. 

In principle, the winding inductances and magnetic 

forces of a double stator electric machine are 

analyzed and compared in this research; for better 

insight into its output profile, especially, as it relates 

to pole number modifications. Basic information 

about the researched title is provided in section 1 

(Introduction) while the applied method and 

materials are presented in section 2 (methodology). 

The results are discussed in Section 3 and 

conclusions are drawn in Section 4. 

METHODOLOGY 

The schematic and mesh contour of the analyzed 

model are depicted in Figure 1 (a) and (b), 

respectively. It is a double stator machine with a fit-

in rotor. Alternating current (AC) armature 

windings are mounted in both inner and outer stator 

slots while the magnets are located only in the inner 

stator. The analyzed machine has six (6) slots and 

four (4) different poles, i.e. 10-, 11-, 13- and 14-

pole. It is worth mentioning that small discrete mesh 

elements are applied in this study, for enhanced 

prediction; this is evident in Figure 1(b). The 

simulation was carried out on load conditions, 

using MAXWELL-ANSYS computational 

software. The utilized magnetic remanence is 1.2 

Tesla. The machine is of 90 mm diameter having a 

0.5 mm airgap size with an overall active length of 

25 mm. Note that the cores are made with steel while 

the magnets are of rare-earth class. Maxwell stress 

tensor technique is affected in predicting the 

magnetic forces. The impact of winding inductances 

and magnetic force on the performance of a double 

stator machine is predicted and compared in this 

study amongst different numbers of poles. Predicted 

self-inductance (Ls) and mutual inductance (Lm) are 

computed using Eq. (1) and Eq. (2), respectively. 

Likewise, the direct-axis inductance (Ld) and 

quadrature-axis inductance (Lq) of the machine are 

predicted using Eq. (3) and Eq. (4), respectively. 
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(a) (b) 

Figure 1: Model schematic (Awah, 2020) 

where: ψmag is magnetic flux linkage, ψd and ψq are 

the axis flux linkages, id and iq are the matching axis 

currents (Awah and Okoro, 2019a). 

RESULTS AND DISCUSSION 

Self-inductance and mutual inductance outlines are 

presented in Figure 2. It is revealed that the 10-pole 

and 14-pole machine categories have higher 

amounts of self and mutual inductances compared 

to 11-pole and 13-pole equivalents. This higher 

amount of self-inductance is good fault-tolerance 

ability (Bianchi et al., 2006) and (Awah et al., 

2016); however, a corresponding lower mutual 

inductance value is required in an ideal situation, for 

enhanced magnetic decoupling amongst the 

windings.  

The axes' inductance is shown in Figure 3. The 10-

pole and 14-pole machine types have a greater value 

of direct axis inductance; however, with a 

comparably matched lower amount of quadrature-

axis inductance. Machines that exhibit a high 

amount of direct-axis inductance would be easily 

susceptible to magnetic saturation (Awah, 2022); 

this conviction about the inductance-saturation 

concept is fairly reflected in Table 1 and Figure 4. 

Predicted inductance values of the analyzed 

machines are listed in Table 1; fault-tolerance and 

improved reliability potentials of the machines can 

be inferred from Table 1, using its inductance ratios. 

The predicted negative values of mutual inductances 

in Table 1 indicate that the assumed current 

directions in the simulations are in reversed order. 

However, it is important to note that the computed 

inductance ratios are absolute values, as shown in 

Table 1. It is worth noting that an electrical machine 

having a small value of mutual to self-inductance 

ratio has preferred fault-tolerance and reliability 

properties, as highlighted in (Zhao et al., 2021) and 

(Awah, 2024). It is also noticeable that the 

investigated machines in this study would have 

negligible reluctance torque, due to practically unity 

ratios of its axes inductance (Awah and Okoro, 

2019b).  

It is important to emphasize that the predicted 

results of this study is computer-generated through 

finite element analysis software of the designed 

Figure 1 structure; it is not based on analytical 

modelling or its associated assumptions. 

Nevertheless, Parks’ transformation technique is 

also utilized in converting the relevant three-phase 

components to its equivalent two-axis variables 

(direct-axis and quadrature-axis components). 
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(a) Self-inductance 

 

(b) Mutual inductance 

Figure 2: Inductance comparisons 

 

(a) Quadrature-axis inductance 

 

(b) Direct-axis inductance 

Figure 3: Axes inductance 

Table 1: Inductance Values 

Item Value 

Pole number 10-

pole 
11-pole 13-pole 

14-

pole 

Direct-axis inductance (Ld), mH 0.3169 0.2903 0.2892 0.3229 

Quadrature-axis inductance (Lq), 

mH 
0.3139 0.3328 0.3230 0.3036 

Self-inductance (Ls), mH 0.3556 0.2188 0.2159 0.3727 

Mutual inductance (Lm), mH 0.0646 -0.0921 -0.0906 0.0585 

Operating speed, rpm 400 

Rated current, A 15 

Ratio,  Lq /Ld 0.9905 1.1464 1.1169 0.9402 

Ratio, sm LL /    0.1817 0.4209 0.4196 0.1570 

Axes inductance at different current ratings is 

shown in Figure 4. It is inferred that quadrature-axis 

inductances are larger than their corresponding 

direct-axis inductances in the 11-pole and 13-pole 

categories. However, there are irregular inductance 

waveform trends in the predicted results of the 10-

pole and 14-pole group; likely due to its high 

harmonic components and or magnetic saturation 

effects. In particular, the variation of axes 

inductance with different current settings in the 14-

pole configuration has a weird and trivial impact. 

The rated current of the investigated machine is 15 

A, as provided in Table 1. Thus, current ratings 

below this rated value are applied to avoid the 

saturation effect due to electric overloads.   
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                                    (a) 10-pole                                                                      (b) 11-pole 

   

                                      (c) 13-pole                                                                     (d) 14-pole 

Figure 4: Winding inductances 

 
 

(a) 10-pole (b) 11-pole 

  

(c) 13-pole (d) 14-pole 

Figure 5: Axes force outlines  
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Magnetic axes' force components are displayed in 

Figure 5. It is worth noting that the resulting force 

components are inversely proportional to the 

applied load. The 11-pole machine generated the 

largest force amplitude; nonetheless, this large 

magnetic force value is a flaw in the electrical 

machine and its control applications (Oti and Awah, 

2022). As usual, the machine category having an 

even number of poles shows the least and 

insignificant number of magnetic forces. 

CONCLUSIONS 

Inductance characteristics of a double stator 

machine are presented in this study. It is revealed 

that the machines that have an even number of poles 

exhibit higher fault-tolerance potential against 

short-circuit faults compared to the ones that have 

an odd number of poles; however, with lower ability 

against magnetic coupling faults, as evident from 

their various inductance values. 10-pole and 14-pole 

machine types have lower capacity against magnetic 

saturation compared to its 11-pole and 13-pole 

equivalents; though, with desirable lower magnetic 

force amplitudes. The obtained force values of the 

compared machine types are inversely proportional 

to the applied load. Besides, there is an established 

relationship between the applied current and the 

resulting axes inductance values for the 11-pole and 

13-pole machine categories. 
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