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ABSTRACT  

Better quality and quantity of pyrolysis products from biomass can be obtained by regulating the input 

parameters of the pyrolysis process.  Pyrolysis of Jatropha Curcas seed mixed with alumina catalyst was carried 

out in a fixed bed reactor to study the effects of temperature, time, and particle size on bio char and bio-oil 

yield. The bio-oil yields were optimized using the Optimal Design (OD) under the Combined Methodology of 

the Design-Expert Software (12.0). The input and output parameters were modeled and validated using 

Artificial Neural Networks (ANN) based on 40 experimental data generated by the OD. The optimum bio-oil 

yield of 15.6 wt. % was obtained at 650 °C, 30 min, and 1 mm particle size. The Correlation Coefficient (R2) of 

the model for the bio-char and bio-oil yield under the OD were 0.998 and 0.996, respectively. The optimized 

ANN architecture employed the in-built Levenberg-Marquardt training algorithm in MATLAB software. 

Random division of the data into training, validation and testing sets followed 70:15:15 percentage proportions 

with 15 hidden layers.  This resulted in the minimum Mean Square Error (MSE) of 2.15e-05 and (R2) of 

0.96394 for the bio-oil yield. The FTIR spectra indicated that bio-oil contained phenols, esters, and acids 

compound while its Gas Chromatography analysis showed the presence of pyrrolidine, pyrimidine, and 

aldehydes. These properties signified the bioenergy and biochemical capabilities of the pyrolytic oil obtained. 

The prediction accuracy indicates that both the ANN and OD can be deployed for accurate prediction. 

Keywords:  ANN, Bio-oil, Catalyst, Jatropha Caucus, Optimal Design, Pyrolysis

INTRODUCTION 

The increase in the global population coupled with 

the growth of the automobile industry among others 

has led to the depletion of fossil fuels and a 

consequent rise in the price of petroleum products in 

the past few decades (Tian et. al., 2020). 

Furthermore, the exploration of fossil fuels and the 

applications of their products is partly responsible 

for the increase in carbon dioxide (CO2), depletion 

of the ozone layer, and general environmental 

pollution. Consequently, the development of 

alternative renewable and eco-friendly alternative 

energy sources is sine-qua-non (Lewis and Fletcher 

2013, David et. al., 2018, and Adeniyi et. al., 2021). 

Biomass, which accounts for about 14% of the 

world's energy consumption and one-quarter of 

energy sources, appears to be a potential alternative 

(Kumar et. al., 2019). Agricultural residues can be 

used as biomass fuel for commercial heating and 

this subsequently reduces environmental pollution 

(Arulprakasajothi et. al., 2020). Biomass is derived 

from lignocellulose-contained plants such as 

Jatropha which is a shrub native to Brazil but now 

planted in Mali, Nigeria, Senegal, and Cote d'Ivoire 
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(Kanaujia et. al., 2016). Jatropha fruit contains 30-

40% of oil and this makes it suitable for the 

production of industrial chemicals and biodiesel. 

However, oils produced from jatropha fruits have a 

higher viscosity, lower volatility, and reactivity in 

contrast to normal oils because of the attendance of 

unsaturated hydrocarbon chains (Boubacar et. al., 

2020 and Kethobile et. al., 2020).  

Oils are extracted from biomass via a 

thermochemical conversion process which includes 

pyrolysis, combustion, carbonization, liquefaction, 

and gasification (Kethobile et. al., 2020 and Oladosu 

et. al., 2021). Pyrolysis involves the transformation 

of biomass to char, oil, and non-condensable gas 

under the influence of heating rate, nitrogen flow 

rate, residence time, temperature, and particle size. 

Char components can be applied as fertilizers and 

steam power plants owing to their high heating 

value. Pyrolysis oil, a brownish organic liquid fuel 

that may be considered as feedstock in the creation 

of better-quality chemicals for the automobile 

industry, fuel in furnaces, boilers and superheater 

tubes for steam production while the gaseous 

products can be utilized as an alternative for biogas 

and natural gas for electricity generation (Okonkwo 

et. al., 2018). 

Pyrolysis oil emerges from the complex mixture of 

water (15 to 30%) and various oxygen-containing 

compounds (28 to 40%) such as hydroxyl ketones, 

hydroxyl aldehydes, esters, furans, sugars, phenols, 

and carboxylic acid (Ndukwu et. al., 2020). Because 

of their oxygen-rich composition, bio-oils have low 

heating values and high viscosity. They are 

chemically unstable and immiscible with 

hydrocarbons (Rahman et. al., 2020). Consequently, 

increasing stability, calorific value, and lowering the 

viscosity are necessary. This can be done by 

reducing the quantity of oxygenated compounds via 

the breaking down of complex hydrocarbons into 

simpler molecules by the use of catalysts such as 

mesoporous materials, aluminium oxide, calcium 

oxide, zinc oxide, and zeolites (Ahmad et. al., 2018 

and Wang et. al., 2020). 

Sunarno et al. (2018) reported that the amorphous 

SiO-Al2O3 catalyst has a larger pore volume than the 

zeolite catalyst. The lignin macromolecules or 

dimeric in between SiO-Al2O3 could spread into 

these pores thereby making the catalyst engaged in 

either primary or secondary degradation reactions. 

At higher temperatures, the oil yield induced by the 

SiO-Al2O3 catalyst reduced whereas the gas yield 

increased. Kumar et al., (2019) stated that for the 

thermal decomposition of sewage sludge with 

composite alumina in a fixed bed pyrolytic unit at 

the temperature range of 400 - 650 oC, the non-

condensable gas, liquid, and char yield depends on 

the temperature change. It was acknowledged that at 

a temperature of 500 oC, the maximum liquid and 

usable energy yield were 48.44wt% and 3871kJ/kg 

respectively with a mass ratio of 1/5 composite 

alumina/sewage sludge. Mishra et al., (2020) 

reported optimum process conditions and thermal 

decomposition of cascabel seeds, it was deduced 

that maximum bio-oil (45.26 wt.%) was obtained at 

the temperature of 525 °C, the flow rate of 75 

mL/min for the nitrogen gas, and rate of heating of 

75 °C/min whereas with the presence of CaO 

catalysts at 20 wt.% the bio-oil yield increased to 

49.12wt.%. Yusuff and Owolabi (2019) 

characterized alumina-supported coconut chaff 

catalyst for the production of biodiesel. The 

outcome of the study shows that a reaction time of 

150 mins, a temperature of 338K, catalyst loading 

of 1.5 wt.% and a methanol molar ratio of 12:1, 

produced biodiesel (91.05 wt.%). Garba et al. 

(2018) reported Catalytic upgrading of pyrolytic oil 

using bagasse as a biomass feedstock, it was noted 

that at a temperature of 500 °C and 15% zeolite 

catalyst, the maximum bio-oil yield with and 

without catalyst was 49.4% and 21.1 wt.% 
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respectively. Since the characteristics of bio-oil 

largely depend on the complex interaction between 

the processing parameters/factors, it is therefore 

important to predict and maximize these 

characteristics by using available tools such as 

Artificial Neural Networks (ANN).  

ANN has been deployed for the optimization and 

prediction of biomass pyrolysis products such as 

non-oil jatropha caucus (Kethobile et. al., 2020), 

waste pomegranate peel (Siddiqui et. al., 2019), 

sugarcane bagasse (Kanwal et. al., 2019), palm 

kernel shell (Ozonoh et. al., 2020), perennial grass 

(Mishra et. al., 2020), breadfruit starch hydrolysate 

(Eriola and Ezekiel, 2015), birch branches (Bach 

and Lee, 2017), coal (Ahmad et. al., 2019) and 

Acacia nilotica (Singh et. al., 2020) among others. 

However, there is no report on the optimization and 

prediction of bio-oil yield from the pyrolysis of 

Jatropha Curcas seed blends with alumina catalyst 

through OD and ANN-based approach. This study, 

therefore, aims at investigating the process 

modeling, optimization, and prediction of bio-oil 

yield from Jatropha Curcas seed - alumina mixture 

which is a necessity for industrial process scale-up. 

SAMPLE PROCUREMENT AND 

PREPARATION 

Jatropha Caucus seed was obtained at Osin Budo-

Are in Ilorin, Kwara State, Nigeria. The plant 

materials were dried outdoor, sieved into various 

particle sizes (1-3 mm) using a biomass mill grinder 

(SG-16 Series), and then taken to the laboratory for 

various analyses. Proximate analysis was 

conducted, under ASTM standards (E 871–82), to 

examine the properties of the biomass. The 

percentage compositions of the carbon (C), sulphur 

(S), and nitrogen (N) contents of the samples were 

evaluated using the elemental analyser CHNS-932 

(LECO). A commercial-grade Alumina with 

maximum limits of impurities water-insoluble 

matter (0.2%), loss on ignition at 1100 oC (0.5%) 

Chloride Cl (0.005%). Sulphate (SO4) and Iron Fe 

(0.005) was obtained from reliable representatives 

of the manufacturer and were chosen because of 

their capability to improve the quality of bio-oil 

yield and remove oxygenated compounds. To 

improve the alumina substance, it was cachinnated 

at 450 oC for 1hr and earmarked in a desiccator to 

avoid moisture absorption. The FTIR analysis was 

done to classify the presence of the functional group 

of biomass while GC examination was conducted on 

the optimized bio-oil yield to determine the 

compounds present in the extracted oil. 

EXPERIMENTAL DESIGN 

Experimental design involves the selection of the 

minimum number of design parameters and 

experimental trials to build the most accurate 

regression models. The techniques are generally 

based on Euclidean space, Borel set, and 

Caratheodory’s theorem. Theoretical details are 

presented elsewhere (Jeirani et. al., 2012). For the 

current study, experiments were designed and 

optimized using Design-Expert version 12 within 

the ranges of the process mixture (Jatropha Curcas 

seed (JAS) and alumina catalyst) and factors 

(temperature, time, and size of the particle) as 

shown in Table 1. The nitrogen gas flow rate 

(75mL/min) was kept constant (Mth and Mubarak, 

2019). 

EXPERIMENTAL APPARATUS AND 

OPERATION 

The pyrolysis tests were done using a fabricated 

fixed bed reactor in a nitrogen-rich environment 

(Fig. 1).  The pyrolysis unit comprises a stainless 

steel vertical fixed bed reactor (5 cm in width, and 

length 65 cm) with a distribution plate of 1.0 mm 

diameter placed inside the heating element at 8 cm 

from the bottom (Fig. 1). 
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Table 1. Minimum and maximum values of experimental parameters 

Levels Component Mixture  Factors 

JAS 

(wt.%) 

Alumina 

(wt.%) 

 Temperature (oC) Particle 

(mm) 

Time 

(min) 

Minimum value 90      0  450 1 15 

Maximum value 100     10  650 3 30 

            JAS-Jatropha Curcas seed 

The biomass samples were mixed with the catalyst 

and placed in the retort in preparation for pyrolysis. 

For each experimental run, the reactor temperature 

was set to 30 oC higher than the desired temperature 

to compensate for the heat absorbed by the retort and 

heat loss by convection (Mishra et. al., 2020). The 

samples were thereafter heated steadily under 

nitrogen gas (Guedes et. al., 2018). The spiral 

condenser barrel dipped in the ice salt bath was 

linked to the reactor to condense the vapour while a 

gas sample bag was used for the non-condensable 

gases. The char was taken out of the reactor after the 

specified resident time, air-cooled, and then 

measured. Similarly, the bio-oil was measured after 

condensation. This procedure was followed for all 

biomass samples at different heating times and 

pyrolysis temperatures according to each 

experimental run. After each experiment, the 

product yields were evaluated according to 

Equations 1-3 (Siddiqui et. al., 2019 and Kamoru et. 

al., 2024). 

 

Fig. 1. Fixed bed pyrolytic unit 
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Item Part list Qty Item Part list Qty 
1 Combustion 

chamber enclosure 
1 17 Condenser barrel 1 

2 Combustion 
chamber enclosure 

1 18 Condenser coil  1 

3 Inter enclosure 
cover 

1 19 Top condenser lid 1 

4 Refractory bricks Lot 20 Bottom condenser 
welded 

1 

5 Top refractory 
bricks frame 

- 21 Condenser gasket 1 

6 Combustion 
chamber top 

refractory 

1 22 B 18.22m plain 
washer narrow 

12 

7 Top refractory 
frame hang 

1 23 B 18. 2.3.2 m hex-
screw M10 x 1.5 x 25-

25 CN 

12 

8 Top refractory 
handle 

1 24 B 18. 22.4 m Hex 
flange nut M 10 x1.5 

with 15 WAF N 

12 

9 Heating element 1 25 Cyclone 1 
10 Combustion 

chamber lid 
1 26 Biomass piping 1 

11 Reactor 1 27 Biomass water tank 1 
12 Reactor lid 1 28 Bio oil collector 1 
13 Reactor gasket 1 29 Custom control box 1 
14 B 18.6.7m-

m8x1.25x30 indented 
1 30 Nitrogen gas 

cylinder 
1 

15 B 18.2.24M Hex 
flange nut M8x 

1.25N  

6 31 0.5hp water pump 1 

16 Combustion 
chamber stand 

1 32 Gas bag 1 

 

%Char yield =  

ெ௔௦௦ ௢௙ ௧௛௘ ௖௛௔௥ ௢௕௧௔௜௡௘ௗ ௔௙௧௘௥ ௣௬௥௢௟௬௦௜௦

ெ௔௦௦ ௢௙ ௧௛௘ ௗ௥௜௘ௗ ௥௔௪ ௕௜௢௠௔௦௦
  × 100%      (1)             

% Bio-oil yield =  

ெ௔௦௦ ௢௙ ௧௛௘ ௟௜௤௨௜ௗ ௢௕௧௔௜௡௘ௗ ௔௙௧௘௥ ௣௬௥௢௟௬௦௜௦

ெ௔௦௦ ௢௙ ௧௛௘ ௗ௥௜௘ௗ ௥௔௪ ௕௜௢௠௔௦௦
 × 100%     (2)               

% Gas yield = 100 – (Bio-oil yield % + Char yield 

%)           (3) 

GAS CHROMATOGRAPHY ANALYSIS OF 

BIO-OIL 

The chemical components were separated with 

Agilent 6890 gas chromatograph equipped with an 

on-column automatic injector, flame ionization 

detector, and HP 88 capillary column (100 m x 0.25 

μm film thickness) (made in the USA). The 

temperature of the gas chromatographer column was 

initially set at 160 °C for 2 mins, increased to 180 

°C at 6 °C/min, maintained for 2 mins at 180 °C, 

then further increased to 230 °C at 4 °C/ min, and 

finally maintained for 10 min at 230 °C. The 

temperature of 230 and 250 0C was maintained for 

the injector and detector while the split ratio was 

50:1 

PHYSICOCHEMICAL PROPERTIES OF BIO-

OIL  

The calorific value and viscosity of the pyrolytic oil 

were measured with an oxygen bomb calorimeter 

(XRY-1A Oxygen bomb calorimeter) and a 

rotational viscometer. Furthermore, the moisture 

content and acidity were estimated by the Karl 

Fischer water analyser and Eutech water-resistant 

pH meter, respectively (Boubacar et. al., 2020 and 

Kareem et. al., 2018). 

ANN MODELLING OF PYROLYSIS 

PROCESS  

Artificial neural networks are efficient data-driven 

modelling tools widely used for non-linear 



Oladosu K. O. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 83-103 
 

88 
 

modelling and identification, consisting of input 

layers, hidden layers and output layers linked to 

each other by adjustable weight and bias. In the 

present study, input layers were based on five 

parameters such as JAS, Alumina, temperature, 

particle size and time while the output layer was bio-

oil yield. The modelling was performed in 

MATLAB software through a multilayer perceptron 

feed-forward network trained with Levenberg-

Marquardt training algorithm, trainlm. The 40 

experimental data generated by OD were randomly 

divided into three groups: training data (70%), 

validation data (15%) and testing data sets (15%) for 

the bio-oil yield. Several hidden layers were tested 

because the ANN model with a single layer is often 

too feeble for accurate prediction of a non-linear 

function (Asafa et. al., 2013). In addition, the 

prediction accuracy of the models was also a 

function of the selected training algorithm.  Antwi 

et al. (2017) stated that “trainbfg” and “traincgb” 

did excellently when matched with other eight 

trained algorithms for the prediction of methane and 

biogas yields.  Though Chukwuneke et al. (2021) 

ranked ‘trainlm’ best for the prediction of biochar, 

bio-oil and condensable gases from the pyrolysis of 

industrial biomass wastes. Conversely, Oladosu et 

al. (2021) observed “trainscg’’ as the best algorithm 

for the prediction of combustion characteristics of 

palm fruit biomass in a grate furnace. The preceding 

shows that the selection of the algorithm hinges on 

the obtainable data or problem definition. Therefore, 

the best algorithm can be chosen through an 

optimized ANN architecture. 

VERIFICATION OF ESTIMATED DATA 

Mean Square Error (MSE), and Correlation 

Coefficients (R2) were used to evaluate the ANN 

architecture. These are common measures for model 

predictability are determined from Equations 4 and 

5 respectively. 

𝑀𝑆𝐸 =
ଵ

௡
∑ (𝑦௜ − 𝑦௔௜)ଶ௡

௜ୀଵ         (4) 

𝑅ଶ = 1 −
ଵ

௡
∑

(௬೔ି௬ೌ೔)మ

(௬ೌ೔ି௬೘೔)మ
௡
௜ୀଵ                       (5) 

where n is the number of points,  𝑦௜  is the predicted 

value obtained from the neural network,𝑦௔௜  is the 

actual value and 𝑦௠௜ is the average of actual value. 

The network having minimum MSE and maximum 

R2 is considered the best. R2 values that are close to 

a value of 1.0 indicate very agreeable accuracy of 

the model (Eriola and Ezekiel, 2015). 

RESULTS AND DISCUSSION 

Physicochemical properties of raw JAS 

The proximate analysis of the JAS showed the 

attendance of volatile matter (66.31%), fixed carbon 

(15.75%), moisture content (4.28%), and ash 

content (11.54%) (Table 2). The higher percentage 

of volatile matter made biomass more attractive as a 

pyrolysis feedstock (Mishra and Mohanty, 2020). 

According to the elemental analysis, the feedstock 

contained carbon (43.37%), hydrogen (5.19%), 

nitrogen (1.53), sulphur (0.01%), and oxygen 

(49.53%) which is similar to a previously reported 

study (Siddiqui et. al., 2019). This brings to bear the 

vital elements that influence energy value and 

emission. In addition, JAS was rich in lignin (35.67 

%), cellulose (26.12 wt. %), and hemicellulose 

(19.35%). 

Optimal Design and Statistical Analysis 

Table 3 contains 40 experimental runs obtained 

from the OD along with their respective bio-char 

and oil yields. Regression analysis was conducted to 

establish the relationship between the dependent 

variables (char and oil yields) and independent 

variables (temperature, time, and particle size). The 

relationships, as presented in Eq. (6) and (7), were 

also evaluated for accuracy and sufficiency using 

analysis of variance (ANOVA). 



Oladosu K. O. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 83-103 
 

89 
 

Table 2. Proximate, ultimate, and fiber analysis of feedstock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Char yield = +20.30𝐴 + 29.19𝐵 + 3.23𝐴𝐷 + 4.94𝐴𝐷 + 1.17𝐵𝐷 − 0.992𝐵𝐸 + 15.98 𝐴𝐵𝐸– 154𝐴𝐶𝐷 +

2.42𝐴𝐶𝐸 + 1.69𝐵𝐶𝐷 + 0.9484𝐵𝐷𝐸 + 20.30𝐴 + 6.34 𝐴𝐷ଶ + 3.94 𝐴𝐸ଶ + 2.00𝐵𝐶ଶ − 1.38𝐵𝐸ଶ −

4.83𝐴𝐵𝐶𝐷 + 𝐴𝐵𝐷𝐸                                                                                                                                    (6) 

Bio-Oil yield = +5.25𝐴𝐸 + 3.84𝐵 − 9.66𝐴𝐵 + 1.24𝐴𝐸 + 3.20𝐵𝐶 + 2.18𝐵𝐸 + 1.66𝐵𝐶𝐷 − 1.43𝐵𝐷𝐸 +

2.01𝐴𝐶ଶ + 2.15𝐵𝐶ଶ + 2.14𝐵𝐸ଶ − 6.01𝐴𝐵𝐶𝐷 + 16.00𝐴𝐵𝐷ଶ       (7)  

where A = JAS, B = Aluminium oxide, (Al2O3), C = temperature, D = particle size, and E = time.  

 At a confidence level of 95% (Table 4), the terms in 

the equations are said to be significant when the p-

value < 0.05 [27-28]. Accordingly, the terms, 𝐴𝐷, 

𝐴𝐸, 𝐵𝐷, 𝐵𝐸, 𝐴𝐵𝐸, 𝐴𝐶𝐷, 𝐴𝐶𝐸, 𝐵𝐶𝐷, 𝐵𝐶𝐸, 𝐵𝐷𝐸, 

𝐴𝐷ଶ 𝐴𝐸ଶ, 𝐴𝐵𝐶ଶ, 𝐵𝐸ଶ, 𝐴𝐵𝐶𝐷 and 𝐵𝐷𝐸 are 

significant for char yield with a strong synergic 

effect.  

For bio-oil yield, the 

terms

 𝐴𝐵𝐴𝐸, 𝐵𝐶, 𝐵𝐸, 𝐵𝐶𝐷, 𝐵𝐷𝐸, 𝐴𝐶ଶ, 𝐵𝐶ଶ𝐵𝐸ଶ, 𝐴𝐵𝐶𝐷, 𝐴𝐵𝐷ଶ 

are significant. Invariably, particle size is less 

important to the oil yield in contrast to the 

temperature and time. The model is also very 

significant at a p-value < 0.05.  Furthermore, the 

standard deviation (0.77 and 0.96 for char and oil 

yield, respectively), coefficient of variation R2 (0.99 

and 0.96), R2
Adj (0.97 and 0.89), and other statistical 

parameters support the accuracy and sufficiency of 

the models.  

Analysis Component  Composition 

(wt. %) 

Proximate  Moisture 4.28 

 Ash 11.54 

 Fixed Carbon 15.75 

 Volatile Matter 66.31 

Ultimate  Carbon 43.37 

 Oxygen 49.53 

 Hydrogen 5.19 

 Nitrogen 1.53 

 Sulphur 0.01 

Fiber  Hemicellulose 

Cellulose 

Lignin 

19.35 

26.12 

35.67 
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Table 3. Experimental Runs and Responses Based on D Optimal Combined Design 

Run A B C D E Char yield Bio-oil yield 

 
JAS Al2O3 Temperature (0C) Particle size 

(mm) 
Time (min) Actual Predicted Residual Actual Predicted Residual 

1 95 5 450 2 15 32.1 32.10 0.0040 7.8 7.70 0.0970 

2 93 7 450 1 30 33.2 32.89 0.3109 8.4 8.59 -0.1856 

3 90 10 450 1 15 29.7 29.44 0.2626 2.4 2.56 -0.1591 

4 95 5 650 1 30 26.7 26.92 -0.2226 10.6 10.41 0.1901 

5 90 10 560 1 30 26.6 26.72 -0.1214 8.3 8.26 0.0396 

6 100 0 450 2 30 33.6 33.28 0.3178 8.6 8.04 0.5611 

7 95 5 650 1 15 26.9 26.92 -0.0210 9.3 9.21 0.0924 

8 90 10 560 1 22 28 27.91 0.0907 2.7 2.76 -0.0582 

9 93 7 460 1 22 25.7 27.12 -1.42 4.4 3.58 0.8178 

10 90 10 650 1 23 30.8 29.96 0.8400 8.5 9.08 -0.5826 

11 94 6 574 1 23 25.4 25.27 0.1286 3.4 3.05 0.3471 

12 100 0 450 1 15 28.2 28.42 -0.2211 4.9 5.22 -0.3231 

13 100 0 453 1 22 20.7 20.65 0.0503 6.9 6.64 0.2608 

14 95 5 526 2 30 31.8 32.12 -0.3180 5.5 5.40 0.0962 

15 95 5 561 1 23 23.9 23.66 0.2431 5.7 5.99 -0.2858 

16 95 5 560 1 15 24.5 24.66 -0.1579 2.2 2.27 -0.0720 

17 90 10 450 2 30 25.4 25.31 0.0945 1.9 1.94 -0.0406 

18 100 0 650 1 15 31.2 31.44 -0.2369 5.4 5.91 -0.0582 

19 95 5 560 1 15 24.5 24.66 -0.1579 2.2 2.27 -0.0720 

20 95 5 650 2 21 28.7 28.68 0.0188 8.4 8.46 -0.0572 

21 100 0 650 2 24 26.8 26.46 0.3396 8.5 7.79 0.7141 

22 90 10 455 1 22 31.4 31.65 -0.2484 2.6 2.42 0.1764 

23 95 5 450 1 30 27.6 27.31 0.2931 5.8 5.85 -0.0477 

24 90 10 650 1 15 27.3 27.68 -0.3795 13.4 7.75 0.2565 

25 100 0 650 1 30 20.8 20.98 -0.1818 8.9 9.26 -0.3578 

26 95 5 561 1 23 23.9 23.66 0.2431 5.7 5.99 -0.2858 

27 95 5 454 1 23 26 25.83 0.1673 1.6 1.90 -0.3044 

28 95 5 450 1 15 24.8 24.45 0.3535 5 5.06 -0.0581 

29 100 0 524 2 15 38.1 37.70 0.4027 4.2 3.49 0.7064 

30 100 0 560 1 22 24.3 23.80 0.5031 6 4.84 1.1600 

31 90 10 650 2 25 32.6 32.77 -0.1725 9.8 9.69 0.1142 

32 100 0 560 1 30 19.5 19.37 0.1282 6.5 6.32 0.1757 

33 90 7 650 1 30 30.1 20.43 -0.3321 15.6 13.18 0.2220 

34 100 0 534 2 23 28.5 29.55 -1.05 3.5 5.48 -1.98 
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35 94 6 574 1 23 25.4 25.27 0.1286 3.4 3.05 0.3471 

36 90 10 525 2 15 34.2 34.05 0.1503 2.5 2.62 -0.1179 

37 95 5 629 2 30 29.9 29.71 0.1927 8.4 8.67 -0.2672 

38 100 0 450 1 30 21.8 22.01 -0.2066 5.6 5.84 -0.2409 

39 95 5 650 2 21 28.7 28.68 0.0188 8.4 8.46 -0.0572 

40 95 5 454 1 23 26 25.83 0.1673 1.6 1.90 -0.3044 

Table 4. ANOVA for the char and oil yields 

Source Sum of 
Squares 

DF Mean 
Square 

F-value p-value 

Char yield 

Model 620.19 29 21.39 36.36 < 0.0001* 

Linear Mixture 54.03 1 54.03 91.86 < 0.0001* 

AD 62.32 1 62.32 105.95 < 0.0001* 

AE 139.50 1 139.50 237.19 < 0.0001 

BD 7.98 1 7.98 13.58 0.0042* 

BE 5.82 1 5.82 9.90 0.0104* 

ABE 74.68 1 74.68 126.97 < 0.0001* 

ACD 9.14 1 9.14 15.53 0.0028* 

ACE 22.91 1 22.91 38.96 < 0.0001* 

BCD 11.19 1 11.19 19.03 0.0014* 

BCE 3.53 1 3.53 6.00 0.0343* 

BDE 52.95 1 52.95 90.03 < 0.0001* 

AD² 67.67 1 67.67 115.06 < 0.0001* 

AE² 28.14 1 28.14 47.84 < 0.0001* 

BC² 6.89 1 6.89 11.72 0.0065* 

BE² 3.76 1 3.76 6.40 0.0299* 

ABCD 4.34 1 4.34 7.38 0.0217* 

ABDE 6.12 1 6.12 10.40 0.0091* 

Residual 5.88 10 0.5881 - - 

Lack of Fit 5.88 5 1.18 - - 

Pure Error 0.0000 5 0.0000 - - 

* Significant, Standard deviation = 0.77, mean = 27.63, co-efficient of variation (%) = 
2.78, R2 = 0.99, R2

Adj = 0.96,  

Oil yield 
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Having obtained accurate models, the experimental data 

points were predicted and compared (Fig. 2a and b). 

Accordingly, most of the data lie nearly to the straight line 

with R2 of about 1,   

suggesting excellent concord between the model 

response and experimental data. Invariably, the 

models can be used to predict the value of char and 

oil yields. 

 

Fig. 2. Comparison of actual and forecasted values of the responses for (a) char yield, (b) oil yield 

Model 316.39 29 10.93 11.85 0.0001* 

Linear Mixture 0.1826 1 0.1826 0.1979 0.0066* 

AB 10.02 1 10.02 10.86 0.0081* 

AE 8.74 1 8.74 9.48 0.0117* 

BC 61.37 1 61.37 66.54 <0.0001* 

BE 27.69 1 27.69 30.02 0.0003* 

BCD 10.83 1 10.83 11.75 0.0065* 

BDE 8.06 1 8.06 8.74 0.0144* 

AC2 7.27 1 7.27 7.88 0.0185* 

BC2 7.96 1 7.96 8.63 0.0148* 

BE2 9.01 1 9.01 9.77 0.0108* 

      

ABCD 6.71 1 6.71 7.28 0.0224* 

      

ABD2 24.98 1 24.98 27.09 0.0004* 

Residual 9.22 10 0.9223 - - 

Lack of Fit 9.22 5 1.84 - - 

Pure Error 0.0000 5 0.0000 - - 

*Significant, Standard deviation = 0.96, mean = 5.92, Co-efficient of variation (%) = 
16.22, R2 = 0.97, R2

Adj = 0.89 

(b) (a) 



Oladosu K. O. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 83-103 
 

93 
 

Influence of process conditions on the bio-oil 

yield 

The impacts of the two mixture components 

(Jatropha curcas, Aluminium oxide (Al2O3)) and the 

residence time factor, temperature and particle size 

on the oil yield of the fuel are illustrated in Fig. 3 a-

c. According to the 3-D plots, higher pyrolytic 

temperature up to (650 0C) and volume of JAC at 7 

wt.% alumina favoured bio-oil production. For 

instance, 15.6 % bio-oil yield was obtained at 650 

0C compared to 8.4% at 450 0C. Similarly, increased 

pyrolysis duration from 15 to 30 min raised the bio-

oil yield by 46.2 % and reduced solid residue by 

12.5%. The decrease in the solid yield may be 

attributed to the loss of energy-lean components or 

formation of energy-rich components (Bach and 

Lee, 2017) while the increase in the oil yield may be 

due to the influence of catalyst (Ahmad et. al., 

2019).  According to the 3-D plots, the interaction 

between temperature and time, at constant values of 

jatropha curcas, Al2O3 and particle size, illustrated 

immense effects of these parameters on the oil yield. 

The bio-oil yield of the mixture fuel significantly 

increased to 15.6 % upon increase of alumina 

fraction from 5 up to 7 wt.% and decrease of JAC 

fraction from 95 to 93 wt.% at 650 0C, 1 mm particle 

size and at residence time of 30 min (Fig. 3a-c). 

(a) 

             (c) 

   (b) 

 

 

 

Fig 3: 3D response surface plot for the mutual interaction between the JAS-alumina catalyst mixture at different 
temperature, time, and particle size  
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BIO-OIL AND CHAR CHARACTERIZATION  

Scanning Electron Microscopy (SEM) analysis of 

char and bio-oil yield without and with attendance 

of catalyst (Fig. 4 a-c) indicated that the surface of 

the biochar was cracked with honeycomb pore 

structure at the same operating conditions, 

temperature (650 oC), particle size (1 mm) and 

residence time of (30 mins). The pores present on 

the surface of the biochar may make it applicable in 

the adsorption process (Kumar et. al., 2019 and 

Oladosu et. al., 2022).  From experimental results, 

Run 33 [93:7, 650 °C, 1 mm and 30 mins] gave 

optimum oil yield (15.6 %) while Run 25 [100:0, 

650 °C, 1 mm and 30 mins] gave relatively average 

oil yield (8.9 %) (Fig. 4c). It was also acknowledged 

that the carbon content of the JAS catalyst mixture 

was enhanced (67.8%) for Run 33 in comparison to 

Run 25 (53.4 %) while the oxygen gets reduced 

(7.5%) as against (18.6%) without the presence of a 

catalyst. Moreover, the presence of a catalyst boosts 

the calorific value (43.5 kJ/kg) than without a 

catalyst (38.1 kJ/kg) because of an increase in 

elemental composition. The results indicated that 

Run 25 has a higher viscosity (74.93 cSt) which is a 

key disadvantage of its application in the 

automobile industry. However, the addition of 7 wt 

% Al2O3 to the mixture considerably drops the 

viscosity to 48.5cSt (Table 5) 

 
            

 

             

(c)  

                                                      

        

  

Fig. 4. Biochar (SEM) analysis of Jatropha curcas and bio-oil yield (a) without catalyst (b) with 
the catalyst and (c) bio-oil yield at the same process condition 
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Table 5: Properties of Fuel catalyst mixture at the optimized conditions 
 

Analysis 93:7; 650 0C, 1mm 30mins 100:0; 6500C, 1mm 30 
mins 

Carbon % 67.8 53.4 

Hydrogen % 6.3 4.8 

Oxygen 7.5 18.6 

Nitrogen % 1.8 2.2 

Sulphur% 0.63 1.53 

Calorific Value kJ/kg 43.5 38.1 

Moisture 3.8 4.93 

FTIR Analysis of Bio-oil yield  

The absorption band, 3171.46 – 344.19 cm-1, in the 

FTIR spectra (Fig 5) is linked with the hydroxyl 

group (OH) showing the existence of phenols, 

water, protein, alcohol, and aromatic compounds. 

Furthermore, the noticeable peak at 2924 cm-1 is 

connected to the C-H extending bond.  The 

occurrences of alkanes were seen at the highest 2850 

cm-1 while the topmost 1701 cm-1 showed the 

presence of ketone, aldehyde, and carboxylic acid as 

a result of the widening vibration of C=O (Singh et 

al. 2020). The peak at 1400 cm-1 displayed the 

presence of alkanes because of the occurrence of C-

H bending vibration. Other peaks at 966, 722, and 

667 cm-1 confirmed the appearance of perfumed 

products in the pyrolytic liquid. The appearance of 

the aliphatic and slight aromatic inveterate the 

presence of lignin, cellulose, and hemicellulose 

which could be useful for numerous applications  
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Fig. 6. GC-MS analysis 

Table 6 Major chemical compounds in the optimized bio-oil yield sample classified by GC–MS. 

Compounds            Area (%) 

5-Isothiazolecarboxamide 

2-Propenal, 3-(dimethylamino) –2– (methylamino) – 

1,3–Dimethy-4,5 (1H) – dihydro-1, 2,4-triazole-5-one 

Methane, iodo- 

Methylthiouracil 

5-Amino-1-methyl-4-nitropyrazole 

3,3,5-Trimethylhexahydraozepine, N-acetyl- 

3-Chloro-6-diazocyclohexa-2, 4-dienone 

Magnesium, bis (.eta.˂5˃-2, 4-cyclopentadien-1-yl)- 

Butanoic acid, 2-bromo-, methyl ester 

2-t-Butyl-6-(2-hydroxy-2-napthalen-1-yl-ethyl) – [1,3] dioxin-4-one Butanoic acid, 2-
bromo-, methyl ester 

Boroxine, diethyl methyl- 

Biphenyl 

3-Quinolinecarbonitrile 

Tetracyclo [5.2.1.0 (2,6).0 (3,5)] non-8-ene, 4-methyl-4-phenyl-, endo Naphthalene, 
1,7-dimethyl- 

Naphthalene, 1,4-dimethyl- 

Pent-1-yn-3-ene, 4-methyl -3-phenyl 

Benzamine, 2-methoxy-4-nitro- 

6.11 

 

 

2.13 

 

 

1.53 

 

 

1.46 

 

 

0.99 

 

 

2.10 

 

 

1.77 
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Pyrimidine, 2-(dimethylamino)-5-nitro- 

Diphenylmethane 

3-Phenylbicyclo [3.2.1] octa-2, 6-diene 

3-Phenylbicyclo [3.2.1] octa-2, 6-diene 

2,3,4-Trimethoxyphenylethylamine 

Phenol, 2,4-bis (1,1-dimethylethyl) 

Phenol, 2,4-bis (1,1-dimethylethyl) 

Benzophenone 

1,1’-Biphenyl. 3,4’-dimethyl- 

Pyrido [2,3-b] iodole, 6-methyl- 

2H-Pyran-5-carboxylic acid, 4-methoxy-6-methyl-2-oxo-, ethyl ester 

1H-Pyrazole, 4-chloro-1-phenyl- 

Phenanthrene 

1-Cyclohexene, 4,4-dimethyl-1-[(trimethylsilyl)oxy]- 

Naphthalene, 2,3-dimethyl- 

Naphthalene, 2,3-dimethyl- 

4-Chloro-6- (2-hydroxyphenyl) pyrimidine 

Benzoic acid, m-[[(dimethylamino) methylene] amino]-, methyl ester 

Pyrene, 4,5,9,10-tetrahydro- 

4,4’-Dimethoxy-2,2’-dimethylbiphenyl 

Imidazole, 2-[4-methoxyphenyl]-4-triflouromethyl- 

1-[3,4,5-Trimethoxyphenyl] thiourea 

2-[p-Chlorophenyl] pyrolidine 

6-Chlorochromone 

.alpha.-(p-Methylphenyl) benzyl acetate 

1,2,3-Trimethoxybenzene 

Benzene, 1,3-dinitro- 

1 (2H) –Acenaphthylenone 

Benzenemethanol,.alpha.-methyl-.alpha.-phenyl- 

dl-4-Ethyl-5-methyl-3-(1-carboxyethyl)-.delta. (4)-thiazoline-2-thion 

Furan-2-carbaldehyde, 5-(4-methyl-3-nitrophenyl)- 

2-Propenoic acid, 2-cyano-3-(4-methoxyphenyl)-, ethyl ester 

2-Acetyl-3-(1-methyl-2-pyrrolyl)-1, 4-benzenediol 

 

 

1.01 

 

 

1.85 

 

 

8.57 

 

 

1.08 

 

 

2.43 

 

 

1.39 

 

 

23.71 

 

 

5.47 

 

 

22.83 

 

 

5.07 

 

 

1.87 
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N-(2-Acetylcyclopentylidene)-p-antisidine 

4-(1H-[1,2,4] Triazole-3-carbonyl)-piperazine-1-carboxylic acid ethyl ester 

3,5-Dimethyl-1-dimethylvinylsilyloxybenzene 

Pyridine-4-carboxylic acid, 1,2-dihydro-3-cyano-5, 6-dimethyl-2-oxo-, methyl ester 

1-(3,6,6-Trimethyl-1,6,7,a-tetrahydrocyclopenta[c] pyran-1-yl) ethanone 

 

 

1.77 

 

 

0.89 

 

5.99 

 
 

The organic compounds existing in the pyrolytic 

liquid were recognised by the GC-MS analysis (Fig. 

6 and Table 6). Accordingly, the bio-oil contained 

predominantly pyrimidine (23.71%), pyrrolidine 

(22.83%), and phenols (~8.57%). These compounds 

are largely obtained from hemicellulose 

decomposition (Chukwuneke et. al., 2021).  By-

products of benzoic acid and esters (dimethylamino) 

were also gotten in large quantities. The liquid 

products contain chemicals with oxygen-holding 

functional groups. Oxygen-containing chemicals 

can be produced from fossil fuels using hydration or 

oxygenation of the olefins to present oxygen-

containing functional groups. These functional 

groups are available in the liquid part obtained 

during pyrolysis (Chukwuneke et. al., 2021). The 

outcomes revealed that bio-oil produced from the 

Jatropha caucus possessed a vast quantity of 

preservatives such as phenols, alcohols, acids, and 

others. Therefore, the efficacy of JAS could be used 

to produce biofuels and value-added chemicals. 

3.7 Optimization of ANN Architecture  

The pyrolysis results were also modelled through 

ANN and the outcomes were likened to those of OD. 

The optimum ANN architecture considered was the 

one with the minimum value of MSE and the 

maximum value of R2. To achieve optimal 

architecture for training the hidden layers, trainlm, 

trainscg, and trainbr algorithms were considered. 

The most satisfactory results were obtained with the 

‘trainlm’ algorithm. Table 7 presents some of the 

best performing combinations of different values of 

training: validation: test data division ratios with 

hidden layers for the trainlm algorithm. At length, 

15 hidden layers with 70:15:15 ratio was optimum 

for the bio-oil yield prediction. Accordingly, the 

best ANN architecture has the least MSE (2.15e-05) 

and the largest R2 (0.9639).  

There is a non-linear relationship between the 

number of hidden layers and the data division ratio 

as a comparison of the model performance for the 

bio-oil yield from serial number 1 to 7 (Table 7). 

Going from 1 to 2, it seems that increasing the 

training data percentage while keeping the number 

of hidden layers constant improves upon the MSE 

and R2 values. From 2 to 3, however, increasing the 

number of hidden layers with a constant division 

ratio result in less desirable values of R2 and MSE. 

Interestingly, a further increment on the hidden 

layer (from serial number 3 to 4) while keeping the 

division ratio constant eventually provides a better 

performance of both MSE and R2. While keeping 

hidden layers constant, a slight upward change in the 

validation data ratio at the expense of only the test 

data ratio has no effect on the R2 value but a slight 
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penalty on the MSE (from serial number 4 to 5). The 

R2 value remains unchanged with a downward 

review of the training data division at constant 

validation data ratio and number of hidden layers 

(from serial number 5 to 6). In a contrast, the bio-oil 

yield model benefits the most from lower training 

data ratio and hidden layers in serial number 7. 

Table 7 ANN architecture 

 

 

 

 

 

 

 

 

 

The performance of the optimum ANN architectures 

are depicted in Fig. 7. The regression coefficients 

for the training and testing datasets (0.9995 and 

0.9639) and the number of epochs (9) establish the 

reliability of the model. The error bound plot (Fig 

7d) shows that most of the errors are ranged from 

±0.02363. The ANN model training state (Fig 7e) 

and a cross-plot of the predicted values with the 

actual values (Fig 7f) present the accuracy of the 

model.   

 

                                        (a) 

 

(b) 

 

                                      (c) 

S/N  Data division 
ratio (%) 

Number of hidden 
layers 

MSE R2 

Bio-oil yield 

1 70:15:15 10 9.03e-05 0.9335 

2 80:10:10 10 8.43e-05 0.9353 

3 80:10:10 20 2.00e-04 0.8953 

4 80:10:10 25 1.17e-04 0.9134 

5 80:15:5 25 2.27e-04 0.9134 

6 70:15:15 25 7.20e-05 0.9134 

7 70:15:15 15 2.15e-05 0.9639 
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(d) 

 

(e)  

 

(f)  

Fig. 7:  Results of the ANN model for bio-oil yield. 
(a) The training dataset, (b) Performance, (c) Error 
histogram, (d) Regression, (e) Training state, and (f) 
Actual and ANN values of bio-oil yield. 

CONCLUSIONS 

This study deals with the optimization and 

prediction of bio-oil yield from catalytic pyrolysis of 

Jatropha curcas seeds in a fixed bed reactor. The 

maximum bio-oil yield of 15.6 wt. % was obtained 

at an operating condition of 650 0C temperature, 30 

min time, and 1 mm particle size. The Correlation 

Coefficient (R2) of the model for the bio-char and 

bio-oil yield under the OD were 0.998 and 0.996, 

respectively. The optimized ANN architecture 

employed the in-built Levenberg-Marquardt 

training algorithm in MATLAB. Random division 

of the data into training, validation and testing sets 

followed 70:15:15 percentage proportions with 15 

hidden layers.  This resulted in the minimum Mean 

Square Error (MSE) of 2.15e-05 and Correlation 

Coefficient (R2) of 0.96394 for the bio-oil yield.  

The bio-oil yield contains phenols, ketone, 

aldehyde, carbonyl/carboxylic acid, pyrimidine, and 

pyrrolidine derivatives with phenol acid and 

isothinazole carboxamide derivatives being on the 

lower side. The prediction accuracy indicates that 

both ANN and OD can be deployed for the accurate 

prediction of bio-oil in biomass pyrolysis. The 

analysis of this bio-oil shows that it has the potential 

to be a source of bioenergy and biochemical 

capabilities. Further study can be carried out to 

extract some useful chemicals from the liquid 

products and non-condensable gas.  
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