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ABSTRACT 

 

In this study, the response of two homogeneous parallel beams with two-parameter Pasternak elastic 

foundation subjected to a constant uniform partially distributed moving force is considered. On the 

basis of Euler-Bernoulli beam theory, the fourth order partial differential equations of motion 

describing the behavior of the beams when subjected to a moving force were formulated. In order to 

solve the resulting initial-boundary value problem, finite Fourier sine integral technique and 

differential transform scheme were  employed  to obtain the analytical solution. The dynamic responses 

of  the two beams obtained was investigated under moving force conditions using MATLAB. The 

effects of speed of the moving force, layer parameters such as stiffness (𝑲𝟎) and shear modulus (𝑮𝟎) 

have been conducted for the moving force.Various values of speed of the moving load, stiffness 

parameters and shear modulus were considered. The results obtained indicates that response 

amplitudes of both the upper and lower beams increases with increase in the speed of the moving load. 

Increasing the stiffness parameter is observed to cause a decrease in the response amplitudes of the 

beams. The response amplitudes decreases with increase in the shear modulus of the linear elastic 

layer. 

 

Keywords: Dynamic response, Two-parameter Pasternak elastic Foundation, Euler-Bernoulli beam, Moving Force, 

Foundation Parameter. 

INTRODUCTION 

This work is concerned with the study of elastic 

beams. Beams used in various mechanical systems 

are subjected to forces, which cause them to deform. 

The dynamic behaviour of beam-type structures on 

elastic foundations under the influence of moving 

loads has been subject of concern to numerous 

researchers in the field of mechanical and structural 

engineering. Sun (2001), Sun and Deng 

(1998)].Fryba(1999), in particular presented a 

detailed solution techniques to problems of moving 

loads on Euler-Bernoulli beam supported with one-

parameter foundation model. The analysis of such 

structures supported by elastic foundations traversed 

by moving loads, mostly considered the relatively 

simple model of Winkler (1867) which consists of 

linear independent layer of closely spaced elastic 

springs. The constant of proportionality of these 

springs is termed modulus of subgrade reaction. The 

Winkler’s model which is also termed one-parameter 

models [Eisemberger and Claslomik (1987) could not 

adequately represent the characteristics of foundation 

materials in engineering applications since it assumes 

no interaction between the lateral springs. In an 

attempt to eliminate the shortcoming attributed to 

one-parameter foundation model, an improved theory 

called a two-parameter foundation model was 

proposed by Pasternak (1954) for the analysis of the 

dynamic behavior of beams under moving loads. This 

model has been considered to find a physically close 

and mathematically simple foundation model to 

represent foundation layer. The two-parameter 

Pasternak model was achieved when the ends of the 

vertical springs are connected with an incompressible 

vertical element of a beam, which deforms only by 

transverse shear. The two parameters of the 

foundation layer are the stiffness of the springs and 

the shear rigidity of the beam. Among other proposed 

elastic foundation models such as; Filonenko-

Borodich (1940), Hetenyi (1946), Kerr (1964), the 

most natural extension of the one-parameter elastic 

foundation model is the two-parameter elastic 

foundation model of Pasternak, with shear modulus 

as second parameter. 
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The dynamic analysis of beam-type structures 

supported by two-parameters foundation models 

under moving loads with uniform velocity has been 

investigated.The reactive measure of the elastic layer 

under the action of a distributed load as described by 

Kerr (1964) was introduced in the formulation of the 

differential equation of motion. The results obtained 

indicated that a two-parameter elastic foundation 

model is a more realistic representation of foundation 

models on the basis of practical considerations 

particularly for rocks or gravelly soils.  

Forced transverse vibration & analysis of a simply 

supported and elastically connected double-beam 

system was conducted by Oniszczuk (2003). The 

system was subjected to an arbitrary distributed 

moving load. The method of classical modal 

expansion was applied to determine the dynamic 

responses of the beams due to the harmonic forces of 

excitation. Lancuet al. (2006) applied a finite element 

method to investigate the bending behaviour of 

beams resting on two-parameter elastic foundation. 

Li and Hua (2007) investigated the vibration of two 

beams. The beams were elastically connected under 

different boundary supports. The method of spatial 

finite element was utilized to obtain some numerical 

solutions required for the natural frequencies. 

A great number of the analysis conducted employed 

the method of integral Fourier series transformation 

to solve differential equations of motion of beams 

under the influence of forced vibration [Fryba (1999), 

Mallik et al. (2006), Yong and Yang (2008), Rajib 

U.I (2012)]. On the basis of Rayleigh beam theory, 

forced response vibration analysis of double beam 

system supported by a two-parameter foundation 

with compressive axial loading was developed by 

Mohammadi and Nasirshoaibi(2015). The governing 

fourth order partial differential equations describing 

the motion of the beams were formulated and solved 

using variable separable method and classical modal 

expansion method. The resultant dynamic vibration 

developed in response to forces induced by harmonic 

excitation was discussed. The condition of resonance 

was developed and analyzed. This is to prevent the 

possibility that a resonance condition would occur 

which can cause a sudden catastrophic failure of 

mechanical or structural element. 

The analysis of the forced response vibration of a 

simply supported double Euler-Bernoulli beam 

system which is elastically connected by Pasternak 

middle layer under a uniform distributed moving 

force is studied in this paper. 

MATHEMATICAL FORMULATION OF THE 

PROBLEM 

The elastically connected beams subjected to a 

moving force shown in Figure 1. The response of the 

beams to a moving force is the object of 

investigation. The study includes determining the 

deflections of two beams when subjected to a moving 

force. The formulation of the governing equation for 

the two elastically connected beams, assumed that the 

mass of each of the beams is negligible when 

compared with the mass of the force. The force 

considered here is in the form of a moving force of 

constant magnitude. 

The force is a uniform partially distributed force. The 

behavior of the beam material is linearly elastic and 

the cross section is identical through the length x=0 

to x=L of the beam whose plane of geometry is one. 

The cross-section shear modulus is not negligible 

while ignoring elastic axial deformations. Also the 

axial forces 𝐹0 acting at the beam ends does not vary 

with time. It should also be noted that the two beams 

are undamped identical having the same length 𝐿, and 

mass per unit length 𝜇. 

 

 

 

 

 

 

 

 

 

𝐿 

𝑊𝑖𝑛𝑘𝑙𝑒𝑟 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 

Figure 1: A double-beam system subjected to a moving force. [Abu-Hilal (2006)] 
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The beams has been modeled as two-parameter Pasternak model and was subjected to a distributed moving force. 

According to the Euler-Bernoulli beam theory, the dynamic responses 𝑦1(𝑥, 𝑡)  of the upper beam and 𝑦2(𝑥, 𝑡) of 

the lower beam satisfies the following pair of fourth order governing partial differential equations: 

 

𝐸𝐼
𝜕4𝑦1(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑦1(𝑥, 𝑡)

𝜕𝑡2
− 𝐾0[𝑦1(𝑥, 𝑡) − 𝑦2(𝑥, 𝑡)] 

 

−𝐺0 [
𝜕2𝑦1(𝑥, 𝑡)

𝜕𝑥2
−

𝜕2𝑦2(𝑥, 𝑡)

𝜕𝑥2
] = 𝑅1(𝑥, 𝑡) 

 

and 

𝐸𝐼
𝜕4𝑦2(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑦2(𝑥, 𝑡)

𝜕𝑡2
− 𝐾0[𝑦2(𝑥, 𝑡) − 𝑦1(𝑥, 𝑡)] 

−𝐺0 [
𝜕2𝑦2(𝑥, 𝑡)

𝜕𝑥2
−

𝜕2𝑦1(𝑥, 𝑡)

𝜕𝑥2
] = 0 

where 𝑅1(𝑥, 𝑡) is the applied force defined as: 

 

𝑅1(𝑥, 𝑡) = {
  −

𝑃

𝜀
[𝐻 (𝑥 − 𝜉 +

𝜀

2
) − 𝐻 (𝑥 − 𝜉 −

𝜀

2
)] ;             𝜉 = 𝑣𝑡 +

𝜀

2

 0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                   

 

 

Theboundary conditions associated with equations (1) and (2) are: 

 

𝑦1(0, 𝑡) = 0 = 𝑦1(𝐿, 𝑡);     
𝜕2𝑦1(0, 𝑡)

𝜕𝑥2
= 0 =

𝜕2𝑦1(𝐿, 𝑡)

𝜕𝑥2
 

 

𝑦1(0, 𝑡) = 0 = 𝑦1(𝐿, 𝑡);     
𝜕2𝑦2(0, 𝑡)

𝜕𝑥2
= 0 =

𝜕2𝑦2(𝐿, 𝑡)

𝜕𝑥2
 

and the corresponding initial conditions are: 

  

 
 1

1

,0
,0 0

y x
y x

t


 


;  

 2

2

,0
,0 0

y x
y x

t


 


 

The symbols and parameters used in equations (1)-(2) 

have the following meanings unless otherwise 

redefined in the subsequent discussions. 

E -Young modulus of elasticity, I -Cross-sectional 

moment of inertial   

EI - Flexural rigidity of the beam,𝑅1-Uniform 

partially distributed force of constant 

magnitude


   - Constant mass per unit length 

of the beam, K0  - Stiffness parameter 

𝐺0- Shear modulus that account for the shear 

interaction among the springs 

L  - Fixed length of the beam,  H   - Heaviside 

function such that 𝛿(𝑥) = 𝐻1(𝑥) and 𝛿(𝑥 −
𝑣𝑡)is the Dirac delta functions at point 𝑥 =
𝑣𝑡., 𝑥   - Axial coordinate,  𝑣   - Velocity of 

the moving force, 𝑡    - Time, 𝜀 −
Fixed length of the beam 

Thus, the initial boundary-value problem to be 

analysed is described in equations (1) - (6) 

 

Method of Solution 

In order to solve the initial boundary-value problem 

described in equations (1)-(6), integral 

transformation was first introduced. This method is 

adopted since it has been proved suitable in the 

study of moving loads [Gbadeyan and Oni (1995), 

Rajib UI, et al. (2012)]; Mohammadi and 

Nasirshoaibi (2015)]. The second stage of solution 

was achieved by using differential transform method 

which has equally been demonstrated to be efficient 

(1) 

(3) 

(4) 

(5) 

(6) 

(2) 
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in the solution of both linear and non-linear partial 

and ordinary differential equations (Zhon 1986; 

Allennejad el al. 2009; Raslan et al 2012; Gbadeyan 

and Hammed, 2017). 

Therefore, the initial boundary value problem 

described in equations (1)-(2) is solved by assuming 

the following finite Fourier sine integral 

transformation in the equations.

 

 

�̅�𝑚(𝑛, 𝑡) = ∫ 𝑦𝑚(𝑥, 𝑡)
𝐿

0

𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
𝑑𝑥 ;      𝑚 = 1, 2 ;   𝑛 = 1, 2, … 

and the corresponding inverse is of the form 

 

𝑦𝑚(𝑥, 𝑡) =
2

𝐿
∑ �̅�𝑚(𝑛, 𝑡) 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿

∞

𝑛=1

,      𝑚 = 1, 2. 

 

In view of equations (4)-(6), equation (7) is applied to equation (1) and (2) respectively. After some simplifications, 

the resulting equations are: 

 

�̅̈�1(𝑛, 𝑡) + 𝜔𝑛
2�̅�1(𝑛, 𝑡) + 𝛼𝑛�̅�1(𝑛, 𝑡) + 𝛽𝑛�̅�2(𝑛, 𝑡) =

𝑀𝑔

𝜇
𝑠𝑖𝑛

𝑛𝜋𝑣𝑡

𝐿
 

and  

�̅̈�2(𝑛, 𝑡) + 𝜔𝑛
2�̅�2(𝑛, 𝑡) + 𝛼𝑛�̅�2(𝑛, 𝑡) + 𝛽𝑛�̅�1(𝑛, 𝑡) = 0 

 

 

where  

 

𝛼𝑛 =
1

𝜇
[
𝑛2𝜋2

𝐿2
G0 − K0]   and    β𝑛 =

1

𝜇
(K0 − G0

𝑛2𝜋2

𝐿2
) 

 

𝜔𝑛
2 =

𝐸𝐼

𝜇

𝑛4𝜋4

𝐿4 such that 𝜔𝑛 is the natural frequency of the beam. 

 

Thus, the governing fourth order partial differential 

equations (1) and (2) have thereby, been reduced to 

the second order ordinary differential equations (9) 

and (10) using finite Fourier sine transformation. 

 

DIFFERENTIAL TRANSFORM METHOD 

(DTM) 

The reduced governing differential equations of beam 

motion (9) and (10) are solved using DTM. The 

concept of DTM which was introduced by Zhou 

(1986) to solve intial boundary-value problems in 

enginnering applications have been applied by a great 

number of researchers to solve a wide range of 

moving load vibration-induced problems concerning 

mechanical systems [Ho and Chen (1998), Atternejad 

and Shahba (2008), Gbadeyan and Agboola (2012), 

Raslan et al. (2012), Gbadeyan and Hammed (2017)]. 

The basic idea involves considering an analytic 

function �̅�𝑚(𝑛, 𝑡) having a continuous deivatives 

within the considered domain such that

 

Y𝑚(𝑘) =
1

𝑘!
[
𝑑𝑘�̅�𝑚(𝑛, 𝑡)

𝑑𝑡𝑘
]

𝑥=𝑥0

 

where �̅�𝑚(𝑛, 𝑡)  is the original function and 𝑌𝑚(𝑘) is the transformed function. The differential inverse transform of  

𝑌𝑚(𝑘)is defined as 

(7) 

(8) 

(9) 

(10) 

(10a) 

(11) 
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�̅�𝑚(𝑛, 𝑡) = ∑ 𝑌𝑚(𝑘)(𝑡 − 𝑡0)𝑘

∞

𝑘=0

 

 

Considering equations (11) and (12), the resulting equation is 

�̅�𝑚(𝑛, 𝑡) = ∑
(𝑡 − 𝑡0)𝑘

𝑘!

𝑑𝑘 𝑌𝑚(𝑘)

𝑑𝑡𝑘

∞

𝑘=0

|

𝑡=0

 

 

 

 

When the values of 𝑡0 = 0, equation (13) yields 

 

�̅�𝑚(𝑛, 𝑡) = ∑
𝑡𝑘

𝑘!
[
𝑑𝑘 𝑌𝑚(𝑘)

𝑑𝑡𝑘
]

𝑡=0

∞

𝑘=0

 

Hence, 

�̅�𝑚(𝑛, 𝑡) = ∑ 𝑌𝑚(𝑘)𝑡𝑘

∞

𝑘=0

 

 

 

The main difference between Taylor series method 

and differential transform method is that the former 

requires computations of higher order derivatives that 

are quite formidable while the latter involves iterative 

procedure instead. In real life application similar to 

the present situation, the function �̅�𝑚(𝑛, 𝑡) should be 

a finite series such that equation (15) becomes

 

 

�̅�𝑚(𝑛, 𝑡) = ∑ 𝑌𝑚(𝑘)𝑡𝑘

𝑁

𝑘=0

 

 

Hence, ∑ 𝑌𝑚(𝑘)𝑡𝑘∞
𝑘=𝑁+1  is regarded as negligibly 

small such that the values of 𝑁 is decided by the 

convergence of natural frequency in this study. The 

fundamental operations that are frequently used in the 

transformation of the equation of motion and the 

boundary conditions are listed in the Tables 1 and 2.

 

 

 

 

 

 

 

 

(12) 

(13) 

(14) 

(15) 

(16) 
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Table 1: Basic Theorem of Differential Transform Method for Equations of motion 

 

Original function Transformed function 

𝑦(𝑡) = 𝑢(𝑡) + 𝑣(𝑡) 𝑌(𝑘) = 𝑈(𝑘) + �̅�(𝑘) 

𝑦(𝑡) = 𝑐𝑢(𝑡) 𝑌(𝑘) = 𝑐𝑈(𝑘) 

𝑦(𝑡) =
𝑑𝑢(𝑡)

𝑑𝑡
 

𝑌(𝑘) = (𝑘 + 1)𝑈(𝑘 + 1) 

𝑦(𝑡) =
𝑑𝑛𝑢(𝑡)

𝑑𝑡𝑛
 

𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2) … (𝑘 + 𝑛 − 1)(𝑘 + 𝑛)𝑈(𝑘 + 𝑛) 

𝑦(𝑡) = 𝑠𝑖𝑛 𝑎𝑡 
𝑌(𝑘) =

1

𝑘!
𝑎𝑘  𝑠𝑖𝑛 (

𝑘𝜋

2
) 

 

𝑦(𝑡) = cos at 
𝑌(𝑘) =

1

𝑘!
𝑎𝑘  𝑐𝑜𝑠 (

𝑘𝜋

2
) 

 

𝑦(𝑡) = 𝑠𝑖𝑛ℎ 𝑎𝑡 
𝑌(𝑘) =

1

2𝑘!
[(𝑎)𝑘 − (−𝑎)𝑘] 

 

𝑦(𝑡) = 𝑐𝑜𝑠ℎ 𝑎𝑡 
𝑌(𝑘) =

1

2𝑘!
[(𝑎)𝑘 + (−𝑎)𝑘] 

 

 

 

Table 2:  Theorem of Differential Transform Method for Boundary Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

In view of equation (16), and with the application of the results in Tables 1 and 2 to equations (9) and (10), the 

unknown functions �̅�𝑚(𝑛, 𝑡)for 𝑚 = 1, 2 are obtained as 

�̅�1(𝑛, 𝑡) = (
𝑀𝑔

𝜇
) (

𝑛𝜋𝑣

𝐿
) [

1

3!
𝑡3 −

1

5!
[[(

𝑛𝜋𝑣

𝐿
)

2

+ 𝜔𝑛
2] + 𝛼𝑛] 𝑡5] 

+
1

7!
[[(

𝑛𝜋𝑣

𝐿
)

4

+ 𝜔𝑛
2 [[(

𝑛𝜋𝑣

𝐿
)

2

+ 𝜔𝑛
2] + 𝛼𝑛] + 𝛽𝑛

2] 𝑡7 + ⋯ ] 

 

Original BC (𝑥 = 0) T-BC (𝑥 = 0) Original BC (𝑥 = 0) T-BC (𝑥 = 0) 

𝑤(0) = 0 �̅�(0) 𝑤(1) = 0 
∑ �̅�(𝑘)

∞

𝑘=0

= 0 

𝑑𝑤(0)

𝑑𝑥
= 0 

�̅�(1) 𝑑𝑤(1)

𝑑𝑥
= 0 ∑ �̅�(𝑘)

∞

𝑘=0

= 0 

𝑑2𝑤(0)

𝑑𝑥2
= 0 

�̅�(2) 𝑑2𝑤(1)

𝑑𝑥2
= 0 ∑ 𝑘(𝑘 − 1)

∞

𝑘=0

�̅�(𝑘) = 0 

𝑑3𝑤(0)

𝑑𝑥3
= 0 

�̅�(3) 𝑑3𝑤(1)

𝑑𝑥3
= 0 ∑ 𝑘(𝑘 − 1)

∞

𝑘=0

(𝑘 − 2)�̅�(𝑘) = 0 

 

(3.30) 

(3.31) 

(17) 



Hammed F.A.  et al./LAUTECH Journal of Engineering and Technology 14(2) 2020:129-138 

 

135 
 

�̅�2(𝑛, 𝑡) = −𝛽𝑛 (
𝑀𝑔

𝐿
) (

𝑛𝜋𝑣

𝐿
) [

1

5!
𝑡5 +

1

7!
[𝜔𝑛

2 + 2𝛼𝑛 + [(
𝑛𝜋𝑣

𝐿
)

2

+ 𝜔𝑛
2]] 𝑡7 + ⋯ ] 

On substituting equations (17) and (18) into equation (8) for the case 𝑚 = 1 and 𝑚 = 2 respectively, the resulting 

equations are 

𝑦1(𝑥, 𝑡) =
2

𝐿
∑ �̅�1(𝑛, 𝑡) 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

 

𝑦2(𝑥, 𝑡) =
2

𝐿
∑ �̅�2(𝑛, 𝑡) 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿

∞

𝑛=1

 

Hence, 𝑦1(𝑥, 𝑡) and 𝑦2(𝑥, 𝑡) represent the dynamic responses of the simply supported upper and lower Euler-

Bernoulli beams with Pasternak elastic middle layer under a uniform partially distributed moving force R1(𝑥, 𝑡). 

 

RESULTS AND DISCUSSION 

Numerical analysis of the results obtained in 

equations (19) and (20) is conducted. This has to do 

with situations when the elastically connected beams 

under a partially distributed moving force is assumed 

undamped. The rotatory inertia effects was ignored 

while those of shear modulus was taken into 

consideration. Also, the mass of the beams is 

assumed negligible when compared to that of the 

moving force. 

In order to obtain the layer shear stiffness effects as 

well as those of other interacting beam parameters, 

the analytic results obtained represented by equations 

(19) and (20) were simulated using MATLAB. These 

numerical computation was achieved for the two 

beams by making use of the following values: [Abu-

Hilal (2006)] for the purpose of comparison.𝜇 =
0.075;   𝐸𝐼 = 16,000;   𝑔 = 10;   𝐿 = 6;  𝜀0 =

0.10, 0.20, 0.30, 0.35; 𝑥 = 3; 𝑘 = 10; 𝜋 =
22

7
; 𝑡 =

0.5

 

  

(18) 

(19) 

(20) 

5.  SIMPLY SUPPORTED MOVING FORCE GRAPHS 
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Figures 1 and 2 are the respective plots of variation 

of velocity of the load on the transverse deflection of 

the upper and lower beams due to moving force. An 

increase in velocity is observed to cause an increase 

in the response amplitude of both the upper and lower 

beams. 

Figures 3 and 4 shows the variation due to shear 

modulus 𝐺0 of the foundation layer. Increasing the 

shear modulus is seen to cause a decrease in the 

absolute response amplitude of both the upper and 

lower beams. However, setting the value of shear 

modulus to zero, the same results as those of Abu-

Hilal (2006) was obtained. 

Figures 5 and 6 shows the absolute response 

amplitudes due to variation of stiffness parameter 𝐾0 

due to the moving force on the dynamic response of 

the beams. Increasing the values of 𝐾0 is seen to 

cause a decrease in the response amplitudes of the 

beams. The absolute response amplitudes is observed 

to be greater in the upper beam when compared with 

those observed in the lower beam. 

CONCLUSION 

This paper examines the dynamics responses of a 

double Euler-Bernoulli beam system which is 

elastically connected by a two-parameter Pasternak 

foundation model under the action of a moving 

distributed force. Finite Fourier sine transformation 

was employed to reduce the fourth order partial 

differential equations describing motion of the beams 

to second order ordinary differential equations. The 

dynamic response of the beams were then obtained 

using differential transformation method. Numerical 

computations were conducted to analyze the dynamic 

responses obtained for the beams supported by 

Pasternak foundation, with different values of the 

foundation interacting parameters including various 

value of speed of the moving force. 
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The method employed has been found efficient in the 

solution of governing equations of beam motion 

supported by two-parameter Pasternak foundation 

under a moving force. The speed of the moving force 

affects the dynamic response of the beams. 

Shear and stiffness parameters have a significant 

effect on the beam responses. It is observed that 

increasing these foundation parameters causes a 

decrease in the absolute response amplitudes of the 

beams. This study can be extended to a moving mass 

problem of double beam systems where axial forces 

are taken into account. 
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