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ABSTRACT 

In this paper, transverse response of a double beam system traversed by a concentrated moving mass is investigated. 

The system, which is elastically restrained at both ends, consists of two identical homogeneous parallel Euler-

Bernoulli beams and are continuously interconnected with a viscoelastic Winkler-type layer. Of particular interest, 

is the effect of the moving load on the dynamic response of the system. The solution scheme deployed involves, 

using series variable separable method, modified Struble’s method and differential transformation method (DTM). 

For the purpose of demonstrating the simplicity and efficiency of the technique, numerical examples are explored. 

The dynamic deflections of the beams are presented graphically and are found comparable with the existing results 

for the case of a moving force. The effect of various values of the mass of the moving load on the dynamic response 

of the beam are presented and discussed. The effects of the speed of the moving load, viscoelastic parameter and 

stiffness parameters are also examined 

. 

Keywords: Transverse response, Moving mass, Euler-Bernoulli beam, Viscoelastic Winkler-type layer, Dynamic 

deflection. 

INTRODUCTION 

The analysis of moving load problems is very crucial 

in structural dynamics. Over decades, there have been 

several investigations concerning the dynamic 

response of elastic beam structures under the influence 

of moving loads Fryba (1972), Gbadeyan and Oni 

(1995), Esmailzadeh and Ghorashi (1995), Seelig and 

Hoppmann (1964), Gbadeyan et al (2005), Stojanivic 

and Kozic (2012).. The effect of moving loads on 

engineering structure over which they travel is of great 

effect thereby causing an intense vibration due to high 

velocity. Several applications involving moving loads 

are found in the field of transportation. Various 

structures including road and highway bridges, 

railways, pipelines, rotating machines, tunnels and 

submarines have been subjected to either constant or 

distributed moving masses and in effect, the problem 

of assessing dynamic response of these structures due 

to moving masses has continue to generate a consistent 

research efforts towards mitigating against the 

potential hazard observed over time. The assumption 

of particular end conditions has considerably 

articulated various authors toward addressing most of 

the vibration problem of beam-type structures under 

the influence of consistent excitation phenomenon. In 

t he study presented by Oniszczuk (1999), free 

vibration of elastically connected double Euler-

Bernoulli beam structure is considered. A set of partial 

differential equations describing the motion of the 

system is solved with the aid of classical Bernoulli-

Fourier method. Oniszczuk (2008), developed a theory 

concerning free transverse elastically connected 

double-beam complex system. The classical Euler-

Bernoulli-Fourier method is used to solve the final 

governing differential equations of motion. The 

analysis concerning the problem of a double beam 

system under an applied force is conducted by 

Oniszczuk, Z (2003). The two beams are connected 

together with a parallel distributed springs and 

dashpots. An exact method was presented to solve the 

vibration problem under harmonic excitation. The 

finite element analysis was conducted on a forced 

Timoshenko beams with different double end supports 

by Li and Hua (2016). The vibration modes and 

amplitude-frequency dependence for the forced 

vibration of the system was obtained. Abu-Hilal 

(2016), investigated the dynamic response of a simply 

supported double Euler-Bernoulli beam system under 

a moving constant load. The two beams are 

continuously connected with viscoelastic layer of 

springs and dashpots. The normalized deflections of 

the beams are presented in closed forms. In the study 

conducted by Miirzabeigy and Madoliat (2016), 

transverse free vibration of two parallel elastic beams 

which are partially connected together by elastic layer 

of Winkler type layer is investigated. The differential 

equations of motion for the system was simplified 

using differential transform method to yield natural 

frequencies and mode shapes. Effects of viscoelastic 

inner layer damping and Winkler-type elastic layer on 

the dynamic responses of a double-beam system is 

presented by Mohammedi and Nasirshoaibi (2008). 

Iterated modal expansion method was applied to 

obtain the forced vibration responses of the two beams 
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sequel to the natural frequencies and mode shapes 

initially obtained from the free vibration analysis. 

Mirzabeigy et al, investigated free vibration of two 

parallel beams which are interconnected with variable 

stiffness of Winkler-type elastic layer. The fourth 

order partial differential equations of motion derived 

have been solved by applying differential transform 

method to obtain natural frequencies and normalized 

mode shapes of the system. In Li et al (2016) the 

effects of viscoelastic layer damping and Winkler-type 

layer on the dynamic responses of a beam system is 

investigated. A semi-analytical method developed is 

used to derive the natural frequencies and the 

corresponding mode shapes of vibration of the system 

with interconnected viscoelastic layer. 

In this paper, the primary concern is the effect of the 

mass of the moving load on the dynamic responses of 

the two finite Euler-Bernoulli beams which are 

interconnected by a viscoelastic layer of springs and 

dashports. The beams are elastically restrained at both 

ends with translational and rotational springs. To the 

best knowledge of the authors of the present article, 

the configuration presented has not been reported in 

the previous studies. Having assumed a negligible 

noise effect, the influence of Gussian or non-gaussian 

noise and those of the output constraints has not been 

taken into account. In order to archive the desired 

objectives, a versatile solution scheme which is a 

modification of Gbadeyan, J.A. and Oni, S.T. (1995) 

and Andi, E.A. and Oni, S.T. (2014) is developed. This 

scheme involves a series variable separable method, 

Struble’s asymptotic modification method and an 

iterative differential transform method. 

 

THE STRUCTURAL AND MATHEMATICAL 

FORMULATION OF THE PROBLEM 
The structural model of a double Euler-Bernoulli beam 

system under consideration is shown in Figure 1. This 

is composed of two undamped uniform finite beams 

which are interconnected by a concentrated 

viscoelastic Winkler-type layer of springs and 

dashpots.

 
 

 

The beams are supported at both ends by translational and rotational springs at both ends. The coupled governing 

equations of motion of the vibrating beams are Mirzabegy et al (2016) 

               

       𝐸𝐼
𝜕4𝑊1(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑊1(𝑥, 𝑡)

𝜕𝑡2
= 𝑃1(𝑥, 𝑡) + [𝑘1 + 𝜀0

𝜕

𝜕𝑡
] [𝑊1(𝑥, 𝑡) − 𝑊2(𝑥, 𝑡)]                                                       (1) 

              

      𝐸𝐼
𝜕4𝑊2(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑊2(𝑥, 𝑡)

𝜕𝑡2
= [𝑘1 + 𝜀0

𝜕

𝜕𝑡
] [𝑊2(𝑥, 𝑡) − 𝑊1(𝑥, 𝑡)]                                                                            (2) 

 

where the dynamic concentrated moving load is defined as 

     𝑃1(𝑥, 𝑡) = [𝑀𝐿𝑔 − 𝑀𝐿

𝜕2𝑊1(𝑥, 𝑡)

𝜕𝑡2
− 2𝑀𝐿𝑣

𝜕2𝑊1(𝑥, 𝑡)

𝜕𝑡𝜕𝑥
  − 𝑀𝐿𝑣2

𝜕2𝑊1(𝑥, 𝑡)

𝜕𝑥2
] 𝜕(𝑥 − 𝑣𝑡)                                         (3) 

𝐸 and 𝐼 are the Young’s modulus and moment of inertia of the beams. 𝑊1(𝑥, 𝑡) and 𝑊2(𝑥, 𝑡) are the transverse 

response functions. 𝑥 is the spatial coordinate along the beam length, 𝑡 is the time, 𝜇 and 𝐿 are the mass per unit length 

and length of the beams.𝑣 and  𝑀𝐿 are the velocity and mass of the moving load. The stiffness of the constant 

 

 

 

 

 

 

Figure 1: Double Euler-Bernoulli beam system with ends  restrained : 
Mohammadi and Nasirshoabi (2015) 
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viscoelastic Winkler inner layer is 𝑘1. Acceleration due to gravitational force 𝑔(9.81𝑚𝑠−2) while 𝛿(𝑥) is the Dirac 

delta function defined as, 

𝛿(𝑥) = {
∞,   𝑥 = 0
0,   𝑥 ≠ 0

                                                                                                                                         (4) 

An even function of Fourier cosine series is considered for 𝛿(𝑥 − 𝑣𝑡) and is expressed as  

[1, 2, 3] 

                            𝛿(𝑥 − 𝑣𝑡) =
1

𝐿
+

2

𝐿
∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
                                                                                                     (5) 

The dynamic vibrating structure have elastically restrained end conditions written as [20, 25], 

 

                     
𝜕2𝑊𝑖(0, 𝑡)

𝜕𝑥2
= 0 =

𝜕2𝑊𝑖(𝐿, 𝑡)

𝜕𝑥2
                                                                                                                                  (6) 

 

                     𝐸𝑖𝐼𝑖

𝜕3𝑊𝑖
′′′(0, 𝑡)

𝜕𝑥3
= −𝑘1𝑊𝑖(0, 𝑡)                                                                                                                              (7) 

 

                     𝐸𝑖𝐼𝑖

𝜕3𝑊𝑖(𝐿, 𝑡)

𝜕𝑥3
= 𝑘1𝑊𝑖(0, 𝑡)                                                                                                                                    (8) 

 

where 𝑖 = 1, 2, is representing the upper  and lower beams respectively. The initial conditions in general form are 

 

                     𝑊𝑖(𝑥, 𝑡)|𝑡=0 = 0 =
𝜕𝑊𝑖(𝑥, 𝑡)

𝜕𝑡
|𝑡=0 ,   𝑖 = 1, 2                                                                                                      (9) 

 

METHOD OF SOLUTION 

In order to solve the vibrating dynamic equations (1) and (2), the use of certain scheme is employed. (𝑖) Applying the 

series variable separable method which assume solutions of the form 

 

                         𝑊1(𝑥, 𝑡) = ∑ 𝜙𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥)                                                                                                                       (10) 

                         𝑊2(𝑥, 𝑡) = ∑ 𝛽𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥)                                                                                                                       (11) 

  

 
on equations (1) and (2) respectively. Here, 𝜙𝑚(𝑚; 𝑡), 𝛽𝑚(𝑚; 𝑡) are the time functions and 𝑉𝑚(𝑥) is the mode shape 

function for the upper and lower beams defined as 

 

  𝑉𝑚(𝑥) = 𝑠𝑖𝑛
𝜆𝑚

𝐿
𝑥 + 𝐴𝑚 𝑐𝑜𝑠

𝜆𝑚

𝐿
𝑥 + 𝐵𝑚 𝑠𝑖𝑛ℎ

𝜆𝑚

𝐿
𝑥 + 𝐶𝑚 𝑐𝑜𝑠ℎ

𝜆𝑚

𝐿
𝑥, 𝑚 = 1, 2, …                           (12) 

 

where 𝐴𝑚, 𝐵𝑚, 𝐶𝑚 are constants and can be derived by applying any of the elastic classical end conditions. 

(𝑖𝑖) Introducing the modification of Struble’s Asymptotic method to simplify the reduced coupled equations. 
(𝑖𝑖𝑖)Applying the differential transform method to solve the obtained transformed equations in step (𝑖𝑖). 
 

Transformation Procedure 

The fourth order partial differential equations (1) and (2) are transformed to a pair of coupled second order ordinary 

differential equations, first by introducing equations (10) and (11) into equations (1) and (2) to obtain, 

 

𝐸𝐼 ∑ 𝜙𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚
𝑖𝑣(𝑥) + 𝜇 ∑ 𝜙𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥) = 𝑃1(𝑥, 𝑡) 

               + [𝑘1 + 𝜀0

𝜕

𝜕𝑡
] [ ∑ 𝜙𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚 − ∑ 𝛽𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥)]                                                                 (13) 

(8) 
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                𝐸𝐼 ∑ 𝛽𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚
𝑖𝑣(𝑥) + 𝜇 ∑ �̈�𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥) 

 

                            = [𝑘1 + 𝜀0

𝜕

𝜕𝑡
] [ ∑ 𝛽𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥) − ∑ 𝜑𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥)]                                                        (14) 

 

The load function 𝑃1(𝑥, 𝑡) which is further assumed can be expressed as 

                   𝑃1(𝑥, 𝑡) = ∑ 𝜓𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥)                                                                                                                             (15) 

where  𝜓𝑚(𝑚, 𝑡) is time function. 

Introducing equation (10) into equation (3) for an arbitrary subscript 𝑘, the obtained equation is 

                  𝑃1(𝑥, 𝑡) = [𝑀𝐿𝑔 − 𝑀𝐿 ∑ �̈�𝑘(𝑘; 𝑡)𝑉𝑘(𝑥) − 2𝑀𝐿𝑣 ∑ �̇�𝑘(𝑘; 𝑡)𝑉𝑘
′ (𝑥)

∞

𝑘=1

∞

𝑘=1

 

                                − 𝑀𝐿𝑣2 ∑ 𝜙𝑘(𝑘; 𝑡)𝑉𝑘
″(𝑥)]𝜕(𝑥 − 𝑣𝑡)

∞

𝑘=1

                                                                                                    (16) 

In view of equation (5), a known normalized deflection function 𝑉𝑗(𝑥), 𝑗 = 1, 2, 3, … is applied to the relation (15) 

and the obtained result is compared with relation (16). Furthermore, we note that the normalized deflection function 

𝑉𝑚(𝑥), 𝑚 = 1, 2, 3, … are orthonormal and the integration of the resulting equation along the length of the beam (0 ≤
𝑥 ≤ 𝐿) is performed to yield the following time function: 

 

𝜓𝑚(𝑚; 𝑡) = 𝐴11 + 𝐴12 + 𝐴13 + 𝐴14                                                                                                                        (17)
  

 

                           𝐴11 = 𝑀𝐿𝑔𝛥10(𝑗) +
2𝑀𝐿𝑔

𝐿
∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿
𝛥20(𝑗, 𝑘)

∞

𝑛=1

                                                                                    (18) 

 

           𝐴12 = −
𝑀𝐿

𝐿
∑ �̈�𝑘(𝑘; 𝑡)

∞

𝑘=1

[𝛥1(𝑗, 𝑘) + ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝛥1𝑐(𝑗, 𝑘)

∞

𝑛=1

]                                                                (19) 

 

           𝐴13 = −2
𝑀𝐿𝑣

𝐿
∑ �̇�𝑘(𝑘; 𝑡) [𝛥2(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿
𝛥2𝑐(𝑗, 𝑘)

∞

𝑛=1

]                                  

∞

𝑘=1

                      (20) 

 

                           𝐴14 = −
𝑀𝐿𝑣2

𝐿
∑ 𝜙𝑘(𝑘; 𝑡) [𝛥3(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿
𝛥3𝑐(𝑗, 𝑘)

∞

𝑛=1

]                                          

∞

𝑘=1

              (21) 

 

𝛥10(𝑗) =
1

𝐿
∫ 𝑉𝑗(𝑥)𝑑𝑥

𝐿

0

; 𝛥20(𝑗, 𝑛) = ∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
𝑉𝑗(𝑥)𝑑𝑥                                               

𝐿

0

                                (21a) 

 

𝛥1(𝑗, 𝑘) = ∫ 𝑉𝑘(𝑥)𝑉𝑗(𝑥)𝑑𝑥
𝐿

0

;   𝛥1𝑐(𝑗, 𝑘) = ∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
𝑉𝑘(𝑥)𝑉𝑗(𝑥)𝑑𝑥                       

𝐿

0

                                  (21b) 

 

𝛥2(𝑗, 𝑘) = ∫ 𝑉𝑘
′ (𝑥)𝑉𝑗(𝑥)𝑑𝑥

𝐿

0

;   𝛥2𝑐(𝑗, 𝑘) = ∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
𝑉𝑘
′ (𝑥)𝑉𝑗(𝑥)𝑑𝑥   

𝐿

0

                                                      (21c) 

 

𝛥3(𝑗, 𝑘) = ∫ 𝑉𝑘
′′(𝑥)𝑉𝑗(𝑥)𝑑𝑥

𝐿

0

;   𝛥3𝑐(𝑗, 𝑘) = ∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
𝑉𝑘
′′(𝑥)𝑉𝑗(𝑥)𝑑𝑥

𝐿

0

                                                        (21d) 
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The load function 𝑃1(𝑥, 𝑡) is determined initially, by substituting equation (17) into equation (15)  

noting the relations (18) – (21) and (21a) – (21d). Hence,

 
𝑃1(𝑥, 𝑡) = ∑ 𝑉𝑚

∞

𝑚=1

(𝑥)[𝑀𝐿𝑔𝑉𝑚(𝑣𝑡) 

                   − 
𝑀𝐿

𝐿
∑ �̈�𝑘(𝑘; 𝑡) [𝛥1(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿
𝛥1𝑐(𝑗, 𝑘)

∞

𝑛=1

]

∞

𝑘=1

 

                  −2
𝑀𝐿𝑣

𝐿
∑ �̇�𝑘(𝑘; 𝑡) [𝛥2(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿
𝛥2𝑐(𝑗, 𝑘)

∞

𝑛=1

]

∞

𝑘=1

 

                  −
𝑀𝐿𝑣2

𝐿
∑ 𝜙𝑘(𝑘; 𝑡) [𝛥3(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿
𝛥3𝑐(𝑗, 𝑘)

∞

𝑛=1

]

∞

𝑘=1

]                                                                           (22) 

 

 

By substituting equation (22) into equation (13), we have 

 

    𝐸𝐼 ∑ 𝜙𝑚(𝑚; 𝑡)𝑉𝑚
𝑖𝑣(𝑥)

∞

𝑚=1

+ 𝜇 ∑ �̈�𝑚

∞

𝑚=1

(𝑚; 𝑡)𝑉𝑚(𝑥)                                                                                                     

          − 𝑘1 ∑ 𝜙𝑚(𝑚; 𝑡)𝑉𝑚(𝑥) +

∞

𝑚=1

𝑘1 ∑ 𝛽𝑚(𝑚; 𝑡)𝑉𝑚 (𝑥) − 𝜀0 ∑ �̇�𝑚(𝑚; 𝑡)𝑉𝑚 (𝑥)

∞

𝑚=1

∞

𝑚=1

                                   

                      + 𝜀0 ∑ �̇�𝑚(𝑚; 𝑡)𝑉𝑚(𝑥) =

∞

𝑚=1

∑ 𝑉𝑚(𝑥)𝑀𝐿𝑔𝑉𝑚(𝑣𝑡)

∞

𝑚=1

 

                      −  
𝑀𝐿

𝐿
∑ �̈�𝑘(𝑘; 𝑡) [∆1(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

∆1𝑐(𝑗, 𝑘)]

∞

𝑘=1

 

                      − 2
𝑀𝐿𝑣

𝐿
∑ �̇�𝑘(𝑘; 𝑡) [∆2(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

∆2𝑐(𝑗, 𝑘)]

∞

𝑘=1

 

                      − 
𝑀𝐿𝑣2

𝐿
∑ 𝜙𝑘

∞

𝑘−1

(𝑘; 𝑡) [𝛥3(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝛥3𝑐(𝑗, 𝑘)

∞

𝑛−1

]                                                                        (23) 

 

Based on previous results, it is remarked that for free vibration of a single Euler-Bernoulli beam structure, the 

following homogeneous equation holds. 

             𝐸𝐼𝑉𝑚
𝑖𝑣(𝑥) − 𝜇𝜔𝑚

2 𝑉𝑚(𝑥) = 0                                                                                                                                           (24)  

 

                  𝜔𝑚
2 =

𝜆𝑚
4

𝐿4

𝐸𝐼

𝜇
                                                                                                                                                                 (25) 

such that  𝜔𝑚 is the mth natural frequency of the beam structure. 

By applying equation (24) on equation (23) and after some algebraic simplifications, the obtained equation is 

 

          𝜔𝑚
2 𝜙𝑚(𝑚; 𝑡) + �̈�𝑚(𝑚; 𝑡) −

𝑘1

𝜇
𝜙𝑚(𝑚; 𝑡) +

𝑘1

𝜇
𝛽𝑚(𝑚; 𝑡) −

𝜀0

𝜇
�̇�𝑚(𝑚; 𝑡) +

𝜀0

𝜇
�̇�𝑚(𝑚; 𝑡) 

                        +𝜀1 ∑ �̇�𝑘(𝑘; 𝑡) [𝛥1(𝑗; 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝛥1𝑐(𝑗; 𝑘)

∞

𝑛−1

]

∞

𝑘=1

 

                        +2𝜀1𝑣 ∑ �̇�𝑘(𝑘; 𝑡) [𝛥2(𝑗; 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝛥2𝑐(𝑗; 𝑘)

∞

𝑛−1

]

∞

𝑘=1

 

                        +𝜀1𝑣2 ∑ �̇�𝑘(𝑘; 𝑡) [𝛥3(𝑗; 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝛥3𝑐(𝑗; 𝑘)

∞

𝑛−1

]

∞

𝑘=1

= 𝜀1𝑔𝐿𝑉𝑚(𝑣𝑡)                                              (26) 
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             𝜀1 =
𝑀𝐿

𝜇𝐿
 (𝑚𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜)                                                                                                                                                 (26𝑎) 

Applying the same argument thus far, on equation (14), the obtained result is, 

 

           �̈�𝑚(𝑚; 𝑡) + 𝜔𝑚
2 𝛽𝑚(𝑚; 𝑡) −

𝑘1

𝜇
𝛽𝑚(𝑚; 𝑡) +

𝑘1

𝜇
𝜙𝑚(𝑚; 𝑡) 

                     +
𝜀0

𝜇
�̇�𝑚(𝑚; 𝑡) −

𝜀0

𝜇
�̇�𝑚(𝑚; 𝑡) = 0                                                                                                                        (27) 

 

Hence, equations (26) and (27) are the coupled 

transformed second order ordinary differential 

equations governing the lateral vibration of the double 

Euler-Bernoulli beam structure depicted in Figure 1, 

with a constant viscoelastic inner layer under a 

concentrated moving mass. 

 

Simplification of the coupled second order 

ordinary differential equations 

At the moment, it is remarked that obtaining the 

solution of equations (26) and (27) still 

appearing difficult, not only as a result of their 

high degree of coupleness, but also due to the 

presence of the coefficient of the terms 

representing the inertia of the moving load. 

These terms are functions of the independent 

variable 𝑡 which is associated with equation (26), 

in particular. Hence, further simplification is 

conceived and thereby conducted on the reduced 

dynamic equations of motion. In order to 

accomplish this task, some procedural schemes 

are introduced. This includes decoupling 

equations (26) and (27) and obtaining a modified 

frequency which is due to the effect of the mass 

of the moving load. 

 

Method of Decoupling Equations 

The decoupling of equations (26) and (27) is 

attained initially by considering a dynamical 

system consisting of two disjointed Euler-

Bernoulli beams such that, each is characterized 

with its elastic restrained ends. However, it is 

assumed that the first beam (𝑖 = 1) is acted upon 

by a concentrated moving mass while the second 

beam (𝑖 = 2) vibrates freely. To this end,  

equations (26) and (27) becomes

 

 

                  �̈�𝑚(𝑚; 𝑡) + 𝜔𝑚
2 𝜙𝑚(𝑚; 𝑡) +

𝑀𝐿

𝜇𝐿
∑ �̈�𝑘

∞

𝑘=1

(𝑘; 𝑡) [𝛥1(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝛥1𝑐(𝑗, 𝑘)

∞

𝑛=1

] 

                            + 2𝜀1𝑣 ∑ �̈�𝑘

∞

𝑘=1

(𝑘; 𝑡) [𝛥2(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝛥2𝑐(𝑗, 𝑘)

∞

𝑛=1

] 

                            + 𝜀1𝑣2 ∑ �̈�𝑘

∞

𝑘=1

(𝑘; 𝑡) [𝛥3(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝛥3𝑐(𝑗, 𝑘)

∞

𝑛=1

] = 𝜀1𝑔𝐿𝑉𝑚(𝑣𝑡)                                         (28) 

 

                �̈�𝑚(𝑚; 𝑡) + 𝜔𝑚
2 𝛽𝑚(𝑚; 𝑡) = 0                                                                                                                                     (29) 

 

 Method of Obtaining Modified Frequency 

Due to the inherent difficulty in the solution of 

equations (28) and (29), an approximate analytical 

scheme which is a modified asymptotic method of 

Stuble’s technique [1,3] is applied to equation (28), in 

particular. This involves obtaining a modified 

frequency due to the inertia effect of the mass of the 

moving load so that each differential operator in 

equation (28) is replaced by an equivalent operator 

defined by the modified frequency. Hence, the mass 

ratio of the moving load to its length is demoted by 𝜀1, 

and a small parameter 𝜆, is introduced such that

 

 

                 𝜆 =
𝜀1

1 + 𝜀1

< 1                                                                                                                                                              (30) 

 

Obviously, one can easily deduce that 

                𝜀1 = 𝜆 + 0(𝜆2)                                                                                                                                                               (31) 
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According to Struble’s technique [1,3], the task of obtaining the desired modified frequency involves considering the 

following first approximate solution to the homogenous part of equation (28). 

                𝜙𝑚(𝑚; 𝑡) = 𝜃(𝑚; 𝑡) 𝑐𝑜𝑠[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)] + ∑ 𝜆𝑟𝜙𝑟(𝑚; 𝑡) + 𝑂(𝜆�̄�+1)

�̄�

𝑟=1

                                                    (32) 

 

where 0 < 𝑁 < ∞, 𝜃(𝑚; 𝑡) and 𝛼(𝑚; 𝑡) are slowly time varying functions. 

Now, apply equation (32), its first and second derivatives to the said homogeneous part and taking into account 

equation (31), the obtained equation after some algebraic simplification is 

 

        2𝜔𝑚𝜃(𝑚; 𝑡)�̇�(𝑚; 𝑡) 𝑐𝑜𝑠[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)] − 2𝜔𝑚𝜃(𝑚; 𝑡) 𝑠𝑖𝑛[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)] 
 
             − 2𝜆𝑣𝜔𝑚𝜃(𝑚; 𝑡)𝛥2(𝑗, 𝑚) 𝑠𝑖𝑛[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)] 

             − 4𝜆𝑣𝜔𝑚𝜃(𝑚; 𝑡)𝛥2(𝑗, 𝑚) ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝑠𝑖𝑛[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)]

∞

𝑛=1

 

             − 𝜆𝜔𝑚
2 𝜃(𝑚; 𝑡)𝛥1(𝑗, 𝑚) 𝑐𝑜𝑠[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)] 

             − 2𝜆𝜔𝑚
2 𝜃(𝑚; 𝑡)𝛥1𝑐(𝑗, 𝑚) ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿
𝑐𝑜𝑠[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)]

∞

𝑛=1

 

             + 𝜆𝑣2𝛥3(𝑗, 𝑚)𝜃(𝑚; 𝑡) 𝑐𝑜𝑠[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)] 

             + 2𝜆𝑣2𝛥3(𝑗, 𝑚)𝜃(𝑚; 𝑡) ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝑐𝑜𝑠[ 𝜔𝑚𝑡 − 𝛼𝑚(𝑚; 𝑡)] = 0

∞

𝑛=1

                                                                     (33)

 

 

In obtaining equation (33), all the terms in 𝜆2 and higher powers of 𝜆 have been considered as negligibly unimportant. 

Thus, the corresponding variational equations derived from equation (33) are 

                     −2𝜔𝑚�̇�(𝑚; 𝑡) − 2𝜆𝑣𝜔𝑚𝜃(       𝑚; 𝑡)∆2(𝑗, 𝑚) = 0                                                                                           (34) 

 

                        2𝜔𝑚�̇�𝑚(𝑚; 𝑡) − 𝜆𝜔𝑚
2 ∆1(𝑗, 𝑚) + 𝜆𝑣2∆3(𝑗, 𝑚) = 0                                                                                      (35) 

 

Solving equations (34) and (35) yields, 

 

                      𝜃(𝑚; 𝑡) = 𝐶0𝑒𝑞0𝑡                                                                                                                                                      (36) 

                   𝛼𝑚(𝑚; 𝑡) = 𝐶0𝑒𝑞0𝑡 cos(𝛽𝑚𝑡 − 𝜏𝑚)                                                                                                                       (37) 

 

where 𝑞0 = 𝜆𝑣∆2(𝑗, 𝑚), 𝐶0, 𝜏𝑚 are constants and 

 

                    𝛽𝑚 = 𝜔𝑚 [1 −
𝜆

2
(∆1(𝑗, 𝑚) −

𝑣2∆3(𝑗, 𝑚)

𝜔𝑚
2 

)]                                                                                                      (38) 

 

is the modified frequency which corresponds to the frequency of the free system involving the effect of the mass of 

the moving load. In line with the technique of Struble [1,3], equation (28) reduces to 

�̈�𝑚(𝑚; 𝑡) + 𝛽𝑚
2 𝜙𝑚(𝑚; 𝑡) −

𝑘1

𝜇
𝜙𝑚(𝑚; 𝑡) +

𝑘1

𝜇
𝛽𝑚(𝑚; 𝑡) −

𝜀0

𝜇
�̇�𝑚(𝑚; 𝑡) 

               +
𝜀0

𝜇
�̇�𝑚(𝑚; 𝑡) = 𝜀1𝑔𝐿𝑉𝑚(𝑣𝑡)                                                                                                                      (39) 

Using the same argument, equation (14) which is for the second beam (𝑖 = 2) has been simplified and reduces to 

�̈�𝑚(𝑚; 𝑡) + 𝜔𝑚
2 𝛽𝑚(𝑚; 𝑡) −

𝑘1

𝜇
𝛽𝑚(𝑚; 𝑡) +

𝑘1

𝜇
𝜙𝑚(𝑚; 𝑡) 

                                +
𝜀0

𝜇
�̇�𝑚(𝑚; 𝑡) −

𝜀0

𝜇
�̇�𝑚(𝑚; 𝑡) = 0                                                                                                             (40) 

Hence, equations (39) and (40) are the reduced transformed second order ordinary differential equations of the 

original system whose inner layer have been  retained. 
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DIFFERENTIAL TRANSFORM METHOD 

In order to solve the dynamic equations (39) and (40), 

a known iterative scheme called differential transform 

method (DTM) attributed to Zhou (1986) which has 

been applied by several authors Raslan, et al. (2012), 

Abel-Halim and Erturk (2009) is hereby instroduced. 

This scheme involves considering a continuous kth 

derivative of a time function 𝜙𝑚(𝑚; 𝑡) such that,

 

            �̄�𝑚(𝑘) =
1

𝑘!
[
𝑑𝑘𝜙𝑚(𝑚, 𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

                                                                                                                                      (41) 

The inverse differential transform of equation (41) is defined as 

             𝜙𝑚(𝑚, 𝑡) = ∑ �̄�𝑚(𝑘)(𝑡 − 𝑡0)𝑘

∞

𝑘=0

                                                                                                                                  (42) 

Comparing equations (41) and (42) yields 

             �̄�𝑚(𝑚, 𝑡) = ∑
(𝑡 − 𝑡0)𝑘

𝑘!

∞

𝑘=0

[
𝑑𝑘�̄�𝑚(𝑚, 𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

                                                                                                            (43) 

It has been established that in practical applications, the series in equation (43) is finite. Hence, it can be expressed 

as  

              𝜙𝑚(𝑚, 𝑡) = ∑ �̄�𝑚(𝑘)𝑡𝑘

𝑚

𝑘=0

                                                                                                                                             (44) 

such that ∑ �̅�𝑚(𝑘)𝑡𝑘∞
𝑘=𝑚+1  is considered to be negligibly small. 

 

Tables 1 and 2 below consist of a summary of some of the relationships [28, 29] between the original function and 

the transformed function when 𝑡0 = 0. 
 

Table 1: Theorems of DTM for Equations of Motion 

 

Original function T-function 

)()()( tvtutw   )()()( kVkUkW   

)()( tcutw   )()( kUckW   

dt

tdu
tw

)(
)(   )1()1()(  kUkkW  

n

n

dt

tud
tw

)(
)(   

)())(1)...(2)(1()( nkUnknkkkkW   

)()()( tvtutw   



k

n

nkVnUkW
0

)()()(  

attw sin)(   










2
sin

!

1
)(

k
a

k
kW k  

attw cos)(   










2
cos

!

1
)(

k
a

k
kW k  

attw sinh)(   ])()[(
!2

1
)( kk aa

k
kW   

attw cosh)(   ])()[(
2

1
)( kk aa

k
kW   
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Table 2: Theorem of DTM for Boundary Conditions 

 

Original )0( tBC  )0(  xBCT  Original )1( tBC  )1(  tBCT  

0)0( w  0)0( W  0)1( w  






0

0)(
k

kW
 

0
)0(


dx

dw  0)1( W  
0

)1(


dx

dw  





0

0)(
k

kWk  

0
)0(

2

2


dx

wd  0)2( W  
0

)1(
2

2


dx

wd  





0

0)()1(
k

kWkk  

0
)0(

3

2


dx

wd  0)3( W  0
)1(

3

2


dx

wd  






0

0)()2)(1(
k

kWkkk  

In view of equation (12), the results in Tables 1 and 2 are applied on the transformed equations  

(39) and (40) to yield the flowing recurrence relations. 

 

           �̅�𝑚(𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
[𝐷1 (

𝜂𝑚
𝑘

𝑘!
𝑠𝑖𝑛 (

𝑘𝜋

2
) +

𝐴𝑚

𝑘!
(𝜂𝑚)𝑐𝑜𝑠 (

𝑘𝜋

2
) 

 

                       +
𝐵𝑚

2𝑘!
[(𝜂𝑚)4 − (𝜂𝑚)𝑘] +

𝐶𝑚

2𝑘!
[(𝜂𝑚)𝑘 + (−𝜂𝑚)𝑘]) − 𝛽2�̅�𝑚(𝑘) 

 

                       + 
𝑘1

𝜇
�̅�𝑚(𝑘) −

𝜀0

𝜇
(𝑘 + 1)�̅�𝑚(𝑘 + 1) −

𝑘1

𝜇
�̅�𝑚(𝑘) +

𝜀0

𝜇
(𝑘 + 1)�̅�𝑚(𝑘 + 1)]                                           (45) 

 

             �̅�𝑚(𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
[−𝜔𝑚

2 �̅�𝑚(𝑘) +
𝑘1

𝜇
�̅�𝑚(𝑘) 

 

       −
𝜀0

𝜇
(𝑘 + 1)�̅�𝑚(𝑘 + 1) +

𝑘1

𝜇
�̅�𝑚(𝑘) +

𝜀0

𝜇
(𝑘 + 1)�̅�𝑚(𝑘 + 1)]                                                                  (46) 

𝜂𝑚 =
𝜆𝑚𝑣

𝐿
 

The transformed initial conditions at 𝑡0 = 0 are, 

�̄�𝑚(0) = 0 = �̄�𝑚(1)                                                                                                                                                   (47) 

�̄�𝑚(0) = 0 = �̄�𝑚(1)                                                                                                                                                     (48)
 
 

Applying 𝑘 = 1,2,3, … on equations (45) and (46) using “MAPLE 18”, the corresponding results are 

               �̄�𝑚(2) =
𝐷1

2
(𝐴𝑚 + 𝐶𝑚) +

𝜀0

𝜇
(𝐴𝑚 + 𝐶𝑚)                                                                                                                (49) 

              �̄�𝑚(2) = 0                                                                                                                                                                         (50)
 

             �̅�𝑚(3) =
𝐷1𝜂𝑚

6
(1 + 𝐵𝑚)                                                                                                                                               (51) 

  

              �̅�𝑚(3) =
𝐷1𝜀0

6𝜇
(𝐴𝑚 + 𝐶𝑚)                                                                                                                                             (52) 

 

              �̅�𝑚(4) =
𝐷1

4!
[(𝜂𝑚

2 − 𝛽𝑚
2 )𝐶𝑚 − (𝜂𝑚

2 − 𝛽𝑚
2 )𝐴𝑚 + 2

𝜀0
2

𝜇2
(𝐴𝑚 + 𝐶𝑚) +

𝜀0

𝜇
𝜂𝑚(1 + 𝐵𝑚)]                                   (53) 
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              �̅�𝑚(4) =
𝐷1

4!
[−2

𝜀0
2

𝜇2
(𝐴𝑚 + 𝐶𝑚) −

𝜀0

𝜇
𝜂𝑚(1 + 𝐵𝑚) −

𝑘1

𝜇
(𝐴𝑚 + 𝐶𝑚)]                                                             (54) 

 

              �̅�𝑚(5) =
𝐷1

5! 4!
[𝛽𝑚

2
𝜀0

𝜇
(𝐴𝑚 + 𝐶𝑚) −

𝑘1𝜀0

𝜇2
(𝐴𝑚 + 𝐶𝑚) −

𝜀0

𝜇
(𝐴𝑚 + 𝐶𝑚) 

  −
𝜀0

𝜇
(𝜂𝑚

2 − 𝛽𝑚
2 )𝐶𝑚 −

𝜀0

𝜇
(𝜂𝑚

2 − 𝛽𝑚
2 )𝐴𝑚 −

𝜀0

𝜇2
𝜂𝑚

2 (1 − 𝐵𝑚)]                                                            (55) 

 

               �̅�𝑚(5) =
𝐷1

5!
[𝛽𝑚

2
𝜀0

𝜇
(𝐴𝑚 + 𝐶𝑚) −

𝑘1𝜀0

𝜇2
(𝐴𝑚 + 𝐶𝑚) −

𝜀0

𝜇
(𝜂𝑚

2 − 𝛽𝑚
2 )𝐶𝑚 

− 
𝜀0

𝜇
(𝜂𝑚

2 + 𝛽𝑚
2 ) −

𝜀0𝑘1

𝜇2
𝜂𝑚(1 + 𝐵𝑚)]                                                                                                    (56) 

 

                �̅�𝑚(6) =
𝐷1

6!
[𝜂𝑚

4 (𝐴𝑚 + 𝐶𝑚) + (
𝑘1

𝜇
− 𝛽𝑚

2 ) (𝜂𝑚
2 + 𝛽𝑚

2 )𝐶𝑚 + (𝛽𝑚
2 −

𝑘1

𝜇
) 

− (𝜂𝑚
2 + 𝛽𝑚

2 )𝐴𝑚 +
2𝑘1𝜀0

2 

𝜇3
(𝐴𝑚 + 𝐶𝑚) + (2

𝜀0
2 

𝜇2
−

𝜀0𝛽𝑚
2

𝜇
) (1 − 𝐵𝑚)𝜂𝑚 

− (
𝑘1

𝜇
−

𝜀0
2 

𝜇2
) (𝐴𝑚 + 𝐶𝑚) + (

2𝑘1
2

𝜇2
−

𝜀0
4 

𝜇4
) (𝐴𝑚 + 𝐶𝑚)                                          ]                               (57) 

       �̅�𝑚(6) =
𝐷1

6! (𝜂𝑚
2 + 𝛽𝑚

2 )
[𝜔𝑚

2 (
𝜀0

2 

𝜇2
−

𝑘1

𝜇
) (𝜂𝑚

2 + 𝛽𝑚
2 )(𝐴𝑚 + 𝐶𝑚) 

 

−
 𝜔𝑚

2 𝜀0𝜂𝑚
2

𝜇
(𝜂𝑚

2 + 𝛽𝑚
2 )(1 + 𝐵𝑚) +

𝑘1𝜀0
2 

𝜇3
(𝜂𝑚

2 + 𝛽𝑚
2 )(𝐴𝑚 + 𝐶𝑚) 

 

+ (
𝜀0

2 

𝜇2
+

𝑘1

𝜇
) (𝜂𝑚

2 + 𝛽𝑚
2 )2𝐶𝑚 + (

𝜀0
2 

𝜇2
+

𝑘1

𝜇
) (𝜂𝑚

2 + 𝛽𝑚
2 )(𝜂𝑚

2 − 𝛽𝑚
2 )𝐴𝑚 

 

                                − (
𝜀0

4 

𝜇4
+

𝑘1𝜀0

𝜇2
+

2𝜀0

𝜇
) (𝜂𝑚

2 + 𝛽𝑚
2 )(𝐴𝑚 + 𝐶𝑚)]                                                                                      (58) 

 

where 𝜇 = 𝜂𝑚
2  

By applying the inverse differential transform on equation (44) and noting equation (47) - (58), the obtained dynamic 

lateral deflection equations for the upper and lower Euler-Bernoulli beam system under a concentrated moving mass 

is 

 

          𝑊1(𝑥; 𝑡) = ∑
𝐷1

(𝜂𝑚
2 − 𝛽𝑚

2 )
{

(𝜂𝑚
2 − 𝛽𝑚

2 )(𝐴𝑚 + 𝐶𝑚)

2!
𝑡2 +

𝜂𝑚
2 (𝜂𝑚

2 − 𝛽𝑚
2 )(1 + 𝐵𝑚)

3!
𝑡3

∞

𝑚=1

 

 

              + 
(𝜂𝑚

2 − 𝛽𝑚
2 )2

4!
[

𝐶𝑚

(𝜂𝑚
2 − 𝛽𝑚

2 )
−

(𝜂𝑚
2 + 𝛽𝑚

2 )𝐴𝑚

(𝜂𝑚
2 − 𝛽𝑚

2 )
+

𝑘1

𝜇

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
 

 

              + 2
𝜀0

2 

𝜇2

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
+

𝜀0𝜂𝑚

𝜇

(1 + 𝐵𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
] 𝑡4 +

(𝜂𝑚
2 − 𝛽𝑚

2 )

5!
[
𝛽𝑚

2 𝜀0

𝜇

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
 

 

              − 
𝑘1𝜀0

𝜇2 

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
−

𝜀0
3 𝜂𝑚

𝜇3

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
−

𝜀0

𝜇

𝐶𝑚(𝜂𝑚
2 − 𝛽𝑚

2 )

(𝜂𝑚
2 − 𝛽𝑚

2 )
−

𝜀0

𝜇

𝐴𝑚(𝜂𝑚
2 + 𝛽𝑚

2 )

(𝜂𝑚
2 − 𝛽𝑚

2 )
 

 

                                        − 
𝜀0𝑘1𝜂𝑚

𝜇2 

(1 + 𝐵𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
] 𝑡5 +

(𝜂𝑚
2 − 𝛽𝑚

2 )2 

6!
[
𝜂𝑚

4 (𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
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       + (
𝑘1

𝜇
− 𝛽𝑚

2 )
(𝜂𝑚

2 −𝛽𝑚
2 )

(𝜂𝑚
2 −𝛽𝑚

2 )
𝐶𝑚 + (𝛽𝑚

2 +
𝑘1

𝜇
) (𝜂𝑚

2 + 𝛽𝑚
2 )

𝐴𝑚

(𝜂𝑚
2 −𝛽𝑚

2 )
     

 

                        + 
2𝑘1𝜀0

2 

𝜇3

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
+ (2

𝜀0
2 

𝜇2 
−

𝜀0𝛽𝑚
2

𝜇
)

𝜂𝑚(1 + 𝛽𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
 

 

− (
𝑘1

𝜇
−

𝜀0
2 

𝜇2 
)

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
+ (

2𝑘1
2 

𝜇2 
–

𝜀0
4 

𝜇4 
)

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
] 𝑡6 + ⋯ }                 

 

                                        ×  [𝑠𝑖𝑛
𝜆𝑚𝑥

𝐿
 + 𝐴𝑚 𝑐𝑜𝑠

𝜆𝑚𝑥

𝐿
 +  𝐵𝑚 𝑠𝑖𝑛ℎ

𝜆𝑚𝑥

𝐿
+ 𝐶𝑚 𝑐𝑜𝑠ℎ

𝜆𝑚𝑥

𝐿
]                                               (59) 

 

𝑊2(𝑥; 𝑡) = ∑
𝐶1

(𝜂𝑚
2 − 𝛽𝑚

2 )
{

𝜀0
2 

3! 𝜇2 
(𝜂𝑚

2 − 𝛽𝑚
2 )(𝐴𝑚 + 𝐶𝑚)𝑡3

∞

𝑚=1

 

 

+
(𝜂𝑚

2 − 𝛽𝑚
2 )

4!
[−

𝜀0
2 

𝜇2 

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
−

𝜀0

𝜇

(1 + 𝐵𝑚 )

(𝜂𝑚
2 − 𝛽𝑚

2 )
 – 

𝑘1

𝜇

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
] 𝑡4 − 

(𝜂𝑚
2 − 𝛽𝑚

2 )2 

5!
[
𝛽𝑚

2 𝜀0

𝜇

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
 

 

−
𝑘1𝜀0

𝜇2 

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
−

𝜀0

𝜇

(𝜂𝑚
2 − 𝛽𝑚

2 )

(𝜂𝑚
2 − 𝛽𝑚

2 )
𝐶𝑚 −

𝜀0

𝜇

(𝜂𝑚
2 − 𝛽𝑚

2 )

(𝜂𝑚
2 − 𝛽𝑚

2 )
𝐴𝑚 

 

−
𝜀0 𝑘1

𝜇2 

𝜂𝑚(1 + 𝐵𝑚 )

(𝜂𝑚
2 − 𝛽𝑚

2 )
] 𝑡5 +  

(𝜂𝑚
2 − 𝛽𝑚

2 )

5!
[ 𝜔𝑚

2 (
𝜀0

2 

𝜇2 
−

𝑘1

𝜇
)

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
 

 

−
 𝜔𝑚

2 𝜀0
2 𝜂𝑚

2

𝜇2 

(1 + 𝐵𝑚 )

(𝜂𝑚
2 − 𝛽𝑚

2 )
+

𝑘1𝜀0
2 

𝜇3 

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
+ (

𝜀0
2 

𝜇2 
+

𝑘1

𝜇
) (𝜂𝑚

2 − 𝛽𝑚
2 )2

𝐶𝑚

(𝜂𝑚
2 − 𝛽𝑚

2 )
 

 

                              + (
𝜀0

2 

𝜇2 
+

𝑘1

𝜇
)

(𝜂𝑚
2 + 𝛽𝑚

2 )

(𝜂𝑚
2 − 𝛽𝑚

2 )
𝐴𝑚 − (

𝜀0
4 

𝜇4 
–

𝑘1𝜀0

𝜇2 
+

2𝜀0

𝜇
)

(𝐴𝑚 + 𝐶𝑚)

(𝜂𝑚
2 − 𝛽𝑚

2 )
] 𝑡6 + ⋯ } 

 

                              ×  [𝑠𝑖𝑛
𝜆𝑚𝑥

𝐿
 +  𝐴𝑚 𝑐𝑜𝑠

𝜆𝑚𝑥

𝐿
+ 𝐵𝑚 𝑠𝑖𝑛ℎ

𝜆𝑚𝑥

𝐿
+ 𝐶𝑚 𝑐𝑜𝑠ℎ

𝜆𝑚𝑥

𝐿
]                                                         (60) 

  

 

ILLUSTRATIVE EXAMPLE OF AN 

ELASTICALLY RESTRAINED DOUBLE 

EULER-BERNOULLI BEAM SYSTEM 

The theory discussed thus far, is for general boundary 

conditions. In this section, the system considered 

consists of two finite Euler-Bernoulli beams which are 

elastically restrained at both ends and are 

interconnected by a viscoelastic layer of springs and 

dashports. For such a system, the boundary conditions 

due to equations (6) – (8) are:

 

 

                                                 𝑊1(0, 𝑡) = 0 = 𝑊1
′′(𝐿, 𝑡)                                                                                                           (61) 

𝑊2(0, 𝑡) = 0 = 𝑊2
′′(𝐿, 𝑡)                                                                                                           (62) 

𝑊1
′′′(0, 𝑡) = 𝐶01𝑊1(0, 𝑡)                                                                                                            (63) 

𝑊2
′′′(0, 𝑡) = 𝐶02𝑊2(0, 𝑡)                                                                                                            (64) 

𝑊1
′′′(𝐿, 𝑡) = 𝐶01𝑊1(𝐿, 𝑡)                                                                                                            (65) 

𝑊2
′′′(𝐿, 𝑡) = 𝐶02𝑊2(𝐿, 𝑡)                                                                                                            (66) 

 

where 𝐶01 =
−𝑘0

𝐸1𝐼1
 and 𝐶02 =

𝑘0

𝐸2𝐼2
 

 

The corresponding mode shape function, 𝑉𝑚(𝑥), have 
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𝑉𝑚
′′(0) = 0 = 𝑉𝑚

′′(𝐿)                                                                                                                    (67) 

𝑉𝑚
′′′(0) = 𝐶01𝑉𝑚(𝐿)                                                                                                                      (68) 

𝑉𝑚
′′′(0) = 𝐶02𝑉𝑚(𝐿)                                                                                                                      (69) 

as well as 

 

𝑉𝑟
′′(0) = 0 = 𝑉𝑟

′′(𝐿)                                                                                                                    (70) 

𝑉𝑟
′′′(0) = 𝐶01𝑉𝑟(𝐿)                                                                                                                       (71) 

𝑉𝑟
′′′(0) = 𝐶02𝑉𝑟

′′′(𝐿)                                                                                                                    (72) 

 

By applying equations (67) – (69) on equation (12), we have 

𝐴𝑚 = 𝐶𝑚 = −
𝑠𝑖𝑛𝜆𝑚

𝑐𝑜𝑠𝜆𝑚

,   𝐵𝑚 =
𝑠𝑖𝑛𝜆𝑚

𝑐𝑜𝑠𝜆𝑚

 .
𝑐𝑜𝑠ℎ𝜆𝑚

𝑠𝑖𝑛ℎ𝜆𝑚

                                                                                   (73) 

Hence, the particular mode shape function, 𝑉𝑚(𝑥), for the system under consideration is 

 

𝑉𝑚(𝑥) = (𝜎𝑚
∗ 𝑠𝑖𝑛ℎ

 𝜆𝑚

𝐿
𝑥 + 𝑠𝑖𝑛

 𝜆𝑚

𝐿
𝑥) + 𝜎𝑚 (𝑐𝑜𝑠ℎ

 𝜆𝑚

𝐿
𝑥 − 𝑐𝑜𝑠

 𝜆𝑚

𝐿
𝑥)                                                          (74) 

 

where 

𝜎𝑚
∗ =

𝑠𝑖𝑛ℎ 𝜆𝑚

𝑐𝑜𝑠 𝜆𝑚

 .
𝑐𝑜𝑠ℎ𝜆𝑚

𝑠𝑖𝑛ℎ𝜆𝑚

 , 𝜎𝑚 =  
𝑠𝑖𝑛𝜆𝑚

𝑐𝑜𝑠𝜆𝑚

                                                                        (75) 

 

The roots of the corresponding frequency equation [2] are: 

 

𝜆1 = 4.73004, 𝜆2 = 7.85320,    𝜆3 = 10.99561, …                                                                    (76) 
 

while the corresponding initial conditions due to 

equations (9) remain valid. 

Now, two limiting cases of the forced vibrating 

problem which are associated with equations (39) and 

(40) are considered. This include, 

 

I.  Moving mass problem of a double finite Euler-

Bernoulli beam system which is elastically 

restrained at both ends and interconnected by a 

visco elastic layer with the moving load inertia 

effect taking into account. 

II.  Moving force problem of a double finite Euler-

Bernoulli beam system which is elastically 

restrained at both ends and interconnected by a 

viscoelastic layer and traversed by a moving load 

whose inertia effect is negligible. 

 

In view of equations (39) and (40), the pair of the 

transformed governing equations of motion for the 

case I above is

 

 

 �̈�𝑚𝑚(𝑚; 𝑡) + 𝛽𝑚𝑚
2  𝜙𝑚𝑚(𝑚; 𝑡) −

𝑘1

𝜇
𝜙𝑚𝑚(𝑚; 𝑡) +

𝑘1

𝜇
𝛽𝑚𝑚(𝑚; 𝑡)                                                                             

             −
𝜀0

𝜇
�̇�𝑚𝑚(𝑚; 𝑡) +

𝜀0

𝜇
�̇�𝑚𝑚(𝑚; 𝑡) = 𝐷1𝑉𝑚𝑚(𝑣𝑡)                                                                                       (77) 

�̈�𝑚𝑚(𝑚; 𝑡) + 𝛽𝑚𝑚
2  𝜙𝑚𝑚(𝑚; 𝑡) −

𝑘1

𝜇
𝛽𝑚𝑚(𝑚; 𝑡) +

𝑘1

𝜇
𝜙𝑚𝑚(𝑚; 𝑡)                                                                            

             +
𝜀0

𝜇
�̇�𝑚𝑚(𝑚; 𝑡) −

𝜀0

𝜇
�̇�𝑚𝑚(𝑚; 𝑡) = 0                                                                                                          (78) 

where, 

                    𝐷1 = 𝜀1𝑔𝐿 ;  𝛽𝑚𝑚
2 =

𝜔𝑚 

2
[2 −

2𝜆 (𝜔𝑚
2 −

𝑣2𝑚2𝜋2

𝐿2 )

𝜔𝑚𝑓 
2 ]                                                                                          (79) 

The corresponding transformed governing equations for the case II are 

 

�̈�𝑚𝑓(𝑚; 𝑡) + 𝜔𝑚𝑓 
2 𝜙𝑚𝑓(𝑚; 𝑡) −

𝑘1

𝜇
𝛽𝑚𝑓(𝑚; 𝑡) +

𝑘1

𝜇
𝛽𝑚𝑓(𝑚; 𝑡) 
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                      −
𝜀0

𝜇
�̇�𝑚𝑓(𝑚; 𝑡) +

𝜀0

𝜇
�̇�𝑚𝑓(𝑚; 𝑡) = 𝐶1𝑉𝑚(𝑣𝑡)                                                                                                    (80) 

�̈�𝑚𝑓(𝑚; 𝑡) + 𝜔𝑚𝑓
2 𝛽𝑚𝑓(𝑚; 𝑡) −

𝑘1

𝜇
𝛽𝑚𝑓(𝑚; 𝑡) +

𝑘1

𝜇
𝜙𝑚𝑓(𝑚; 𝑡) 

                       +
𝜀0

𝜇
�̇�𝑚𝑓(𝑚; 𝑡) −

𝜀0

𝜇
�̇�𝑚𝑓(𝑚; 𝑡) = 0                                                                                                                  (81) 

where, 

            𝐶1 =
𝑀𝐿𝑔

𝜇
                                                                                                                                                                         (80𝑎) 

Solving the resulting equations (77) and (78) by introducing the particular equation (74), and applying DTM in 

conjunction with the initial conditions, the obtained equations are  

 

𝑊1𝑚𝑚(𝑥, 𝑡) = ∑
𝐷1

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
{

3

2
𝜎𝑚(𝜂𝑚

2 − 𝛽𝑚𝑚
2 )

2!
𝑡2 −

∞

𝑚=1

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )

3!
[𝜎𝑚

∗ 𝜂𝑚 + 𝜂𝑚

3

2

𝜀0

2𝜇
𝜎𝑚] 𝑡3 

 

+ 
(𝜂𝑚

2 − 𝛽𝑚
2 )2

4!
[

𝜎𝑚

2
(𝜂𝑚

2 + 𝛽𝑚
2 )

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
−

2𝜎𝑚𝛽𝑚𝑚
2

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

3

2

𝑘1

𝜇
𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

3
𝜀0

2

𝜇2 𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
 

 

+ 

𝜀0

𝜇
𝜎𝑚

∗ 𝜂𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

𝜀0

𝜇
𝜂𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
] 𝑡4 +

(𝜂𝑚
2 − 𝛽𝑚

2 )2

5!
[𝜎𝑚

∗ 𝜂𝑚 −
𝜂𝑚(𝜂𝑚

2 + 𝛽𝑚
2 )

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
 

 

− 
𝛽𝑚

2 𝜎𝑚
∗ 𝜂𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
−

3

2
𝛽𝑚𝑚

2 𝜀0

𝜇
𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

𝑘1

𝜇
𝜂𝑚(1 + 𝜎𝑚

∗ )

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

6
𝑘1𝜀0

𝜇2 𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
 

 

+ 
6

𝜀0
3

𝜇3 𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
−

𝜀0
2

𝜇2 𝜂𝑚(1 + 𝜎𝑚
∗ )

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

1

2
𝜎𝑚

𝜀0

𝜇
(𝜂𝑚

2 − 𝛽𝑚𝑚
2 )

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
 

 

−
2

𝜀0

𝜇
𝜎𝑚𝛽𝑚𝑚

2

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
− 

𝜀0
2

𝜇2 𝜎𝑚
∗ 𝜂𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
−

𝜀0
2

𝜇2 𝜂𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
] 𝑡5 + ⋯ }                                                                                           

(𝜎𝑚
∗ 𝑠𝑖𝑛ℎ

𝜆𝑚

𝐿
𝑥 + 𝑠𝑖𝑛ℎ

𝜆𝑚

𝐿
+ 𝜎𝑚𝑐𝑜𝑠ℎ

𝜆𝑚

𝐿
− 𝜎𝑚𝑐𝑜𝑠

𝜆𝑚

𝐿
𝑥)                                                                                (82) 

 

𝑊2𝑚𝑚(𝑥, 𝑡) = ∑
𝐷1

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
{−

3

2

𝜀0

𝜇
𝜎𝑚(𝜂𝑚

2 − 𝛽𝑚
2 )

3!
𝑡3 +

𝜎𝑚(𝜂𝑚
2 − 𝛽𝑚

2 )2

4!
[

𝜀0

𝜇
𝜂𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )

∞

𝑚=1

 

 

−

3

2

𝜀0
2 

𝜇2 𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
−

2
𝑘1

𝜇
𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
−

𝜀0
2 

𝜇2 𝜎𝑚
∗ 𝜂𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
] 𝑡4 −

(𝜂𝑚
2 − 𝛽𝑚

2 )2

5!
[

3

2
𝜔𝑚

2 𝜀0

𝜇
𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
 

 

 + 

9

2

𝑘1𝜀0

𝜇2 𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

6
𝜀0

3

𝜇3 𝜎𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

𝜎𝑚
∗ 𝜂𝑚 (

𝜀0
2 

𝜇2 +
𝑘1

𝜇
)

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

1

2

𝜀0

𝜇
𝜎𝑚 (𝜂𝑚

2 + 𝛽𝑚𝑚
2 )

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
 

 

− 
2

𝜀0
2 

𝜇2 𝜎𝑚𝛽𝑚𝑚
2

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
+

𝜀0
2 

𝜇2 𝜎𝑚𝜂𝑚

(𝜂𝑚
2 − 𝛽𝑚𝑚

2 )
] 𝑡5 + ⋯ } (𝜎∗ 𝑠𝑖𝑛ℎ

𝜆𝑚

𝐿
𝑥 + 𝑠𝑖𝑛

𝜆𝑚

𝐿
𝑥 
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                 + 𝜎𝑚𝑐𝑜𝑠ℎ
𝜆𝑚

𝐿
− 𝜎𝑚𝑐𝑜𝑠

𝜆𝑚

𝐿
𝑥)                                                                                                                                    (83)    

 

Following the same procedure as for the case concerning moving mass problem, the lateral responses of the Case II 

is obtained by solving equations (80) and (81). Hence, the resulting equations are, 

 

𝑊1𝑚𝑓(𝑥, 𝑡) = ∑
𝐷1

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
{

3

2
𝜎𝑚(𝜂𝑚

2 − 𝜔𝑚𝑓
2 )

2!
𝑡2 −

∞

𝑚=1

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )

3!
[𝜎𝑚

∗ 𝜂𝑚 + 𝜂𝑚

3

2

𝜀0

2𝜇
𝜎𝑚] 𝑡3 

 

+ 
(𝜂𝑚

2 − 𝛽𝑚
2 )2

4!
[

𝜎𝑚

2
(𝜂𝑚

2 + 𝛽𝑚
2 )

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
−

2𝜎𝑚𝛽𝑚𝑚
2

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

3

2

𝑘1

𝜇
𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

3
𝜀0

2

𝜇2 𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
 

 

+ 

𝜀0

𝜇
𝜎𝑚

∗ 𝜂𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

𝜀0

𝜇
𝜂𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
] 𝑡4 +

(𝜂𝑚
2 − 𝛽𝑚

2 )2

5!
[𝜎𝑚

∗ 𝜂𝑚 −
𝜂𝑚(𝜂𝑚

2 + 𝛽𝑚
2 )

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
 

 

− 
𝛽𝑚

2 𝜎𝑚
∗ 𝜂𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
−

3

2
𝛽𝑚𝑚

2 𝜀0

𝜇
𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

𝑘1

𝜇
𝜂𝑚(1 + 𝜎𝑚

∗ )

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

6
𝑘1𝜀0

𝜇2 𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
 

 

+ 
6

𝜀0
3

𝜇3 𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
−

𝜀0
2

𝜇2 𝜂𝑚(1 + 𝜎𝑚
∗ )

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

1

2
𝜎𝑚

𝜀0

𝜇
(𝜂𝑚

2 − 𝜔𝑚𝑓
2 )

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
−

2
𝜀0

𝜇
𝜎𝑚𝜔𝑚𝑓

2

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
 

 

− 

𝜀0
2

𝜇2 𝜎𝑚
∗ 𝜂𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
−

𝜀0
2

𝜇2 𝜂𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
] 𝑡5 + ⋯ } (𝜎∗ 𝑠𝑖𝑛ℎ

𝜆𝑚

𝐿
𝑥 + 𝑠𝑖𝑛ℎ

𝜆𝑚

𝐿
𝑥 

 

             + 𝜎𝑚𝑐𝑜𝑠ℎ
𝜆𝑚

𝐿
𝑥 − 𝜎𝑚𝑐𝑜𝑠

𝜆𝑚

𝐿
𝑥)                                                                                                                             (84) 

 

𝑊2𝑚𝑓(𝑥, 𝑡) = ∑
𝐷1

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
{−

3

2

𝜀0

𝜇
𝜎𝑚(𝜂𝑚

2 − 𝛽𝑚
2 )

3!
𝑡3 +

𝜎𝑚(𝜂𝑚
2 − 𝛽𝑚

2 )2

4!
[

𝜀0

𝜇
𝜂𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )

∞

𝑚=1

 

 

− 

3

2

𝜀0
2 

𝜇2 𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
−

2
𝑘1

𝜇
𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
−

𝜀0
2 

𝜇2 𝜎𝑚
∗ 𝜂𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
] 𝑡4 −

(𝜂𝑚
2 − 𝛽𝑚

2 )2

5!
[

3

2
𝜔𝑚

2 𝜀0

𝜇
𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
 

 

+ 

9

2
𝑘1𝜀0𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

6
𝜀0

3 

𝜇2 𝜎𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

𝜎𝑚
∗ 𝜂𝑚 (

𝜀0
2 

𝜇2 +
𝑘1

𝜇
)

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

1

2

𝜀0

𝜇
𝜎𝑚 (𝜂𝑚

2 + 𝜔𝑚𝑓
2 )

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
 

 

− 
2

𝜀0
2 

𝜇2 𝜎𝑚𝜔𝑚𝑓
2

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
+

𝜀0
2 

𝜇2 𝜎𝑚 𝜂𝑚

(𝜂𝑚
2 − 𝜔𝑚𝑓

2 )
] 𝑡5 + ⋯ } (𝜎𝑚

∗ 𝑠𝑖𝑛ℎ
𝜆𝑚

𝐿
𝑥 + 𝑠𝑖𝑛

𝜆𝑚

𝐿
𝑥 

+ 𝜎𝑚𝑐𝑜𝑠ℎ
𝜆𝑚

𝐿
𝑥 − 𝜎𝑚𝑐𝑜𝑠

𝜆𝑚

𝐿
𝑥)                                                                                                                                (85) 

                                                                                              

Thus, equations (82) and (83) represent the lateral 

dynamic deflections of the upper and lower Euler-

Bernoulli beams which are elastically restrained at 

both ends and traversed by a concentrated moving 
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mass, while equations (84) and (85) denote the lateral 

dynamic deflections of the vibrating beams due to a 

concentrated moving force. 

 

Numerical Examples 

In order to illustrate the procedural technique applied, 

specific examples are presented in this section. A 

moving mass of the beam system for which the inertia 

of the moving load is taken into account has been 

solved. Also, a moving force problem of the same 

beam system traversed by a moving load whose inertia 

effect is neglected has been considered. In the two 

cases, elastic spring support conditions have been 

applied to determine the correctness and accuracy of 

the proposed technique. A computer program, 

MAPLE 18, have been applied in view of the 

following values for the parameters of the double-

beam system from Ref, (Oniszczuk, 1999).

 

 

0.1,75.0,5.0,25.0

;35.0,30.0,20.0,10.0;3.12,3.9,3.6,3.3

,6,105.7,10,106.1

0
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22
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24













msv

mLmkgNmkNmIE

 

 

Figure 5.1(i) and 5.1(ii) presents the influence of mass 

ratio on the transverse deflection of both the upper and 

lower Euler-Bernoulli beams. The plot indicates that 

increasing mass ratio lead to a decrease in the response 

amplitudes of both the upper and lower beams. 

However, the absolute maximum response amplitude 

is greater in the case involving lower beam due to 

moving force. 

Figure 5.2(i) and 5.2(ii) represent the effect of 

variation of velocity on the transverse deflection of the 

upper Euler-Bernoulli due to moving mass and 

moving force respectively. It is noticeable that 

increasing the moving speed of the load caused an 

increase in the response amplitude of upper beam due 

to mass and force. 

The absolute maximum response amplitude is 

observed to be greater in the case due to moving force. 

The same trends are observed in Figure 5.2(ii) and 

5.2(iv) for the lower Euler-Bernoulli beam due to 

moving mass and force. 

Effect of variation of viscoelastic parameter 0  is 

shown in 5.3(i) and 5.3(iv). The plots in Figures 5.3(i) 

and 5.3(ii) indicates that increasing 0 , is seen to 

cause an increase in the response amplitude of upper 

beam due to moving mass and moving force. It is 

however noticed that the absolute maximum response 

amplitude decreases as the load traversed the length of 

the beam from Lxandx  0 . The same trend 

is observed in Figure 5.3(i) and 5.3(iv). 

Figures 5.4(i) and 5.4(iv) depicts the effect of stiffness 

parameter  1k  on the dynamic response of both the 

upper and lower Euler-Bernoulli beams. Increasing the 

value of 
1k  in figure 5.4(i) and 5.4(ii) is seen to cause 

a decrease in the response amplitudes of deflection of 

the upper Euler-Bernoulli beam due to moving mass 

and moving force. The same trend is noticed in the 

case of involving lower beam due to moving force as 

shown in Figures 5.4(i) and 5.4(iv) respectively.

 

 

Figure 5.1(i): Graph of deflection against distance varying mass for the upper Euler-Bernoulli beam 
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Figure 5.1(ii): Graph of deflection against distance varying mass for the lower Euler-Bernoulli beam 

 

Figure 5.2(i): Graph of Deflection against distance varying velocity for the upper Euler-Bernoulli beam due 

to moving mass 

 

 

Figure 5.2(ii):Graph of deflection against distance varying velocity for the upper Euler-Bernoulli beam due to 

moving force 

 

 

Figure 5.2:(iii): Graph of deflection against distance varying velocity for the lower Euler-Bernoulli beam due 

to moving mass 
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Figure 5.3(iv): Graph of deflection against distance varying velocity for the lower  

Euler-Bernoulli beam due to moving mass 

 

Figure 5.3 (i): Graph of deflection  against distance varying damping coefficient for the upper  Euler-

Bernoulli beam due to moving mass 

 

 

Figure 5.3 (ii): Graph of deflection against distance varying viscoelastic parameter for the upper Euler-

Bernoulli beam due to moving force 

 

Figure 5.3(iii): Graph of deflection against distance varying damping coefficient for the lower Euler-Bernoulli 

beam due to moving mass 
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Figure 5.3(iv): Graph of deflection against distance varying damping coefficient for the lower Euler-Bernoulli 

beam due to moving force 

 

Figure 5.4 (i): Graph of deflection against distance varying stiffness for the  

upper Euler-Bernoulli beam due to moving mass 

 

 

Figure 5.4 (ii): Graph of deflection against distance varying stiffness for the upper Euler-Bernoulli beam due 

to moving force 

 

 

Figure 5.4(iii): Graph of deflection against distance varying stiffness for the lower Euler-Bernoulli beam due 

to moving mass 
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Figure 5.4(iii): Graph of deflection against distance varying stiffness for the lower Euler-Bernoulli beam due 

to moving mass force 

CONCLUSION 

The dynamic response of a double beam system whose 

ends are elastically restrained with Winkler-type 

interconnected layer under a concentrated moving 

mass have been investigated. The analysis concerning 

differential equations of motion characterising the 

system have been conducted through a solution 

scheme involving a series variable separable method 

for the reduction of order of the coupled motion 

equations, Struble’s asymptotic method for the 

decoupling of the coupled equations and differential 

transform method for the simplification of the 

resulting decoupled second order ordinary differential 

equations of motion. One of the limitations of the 

proposed method is that, it is a small parameter method 

and it is known to be valid in small region. However, 

the enlargement of the convergence domain could be 

achieved through “After Treatment Technique” (30). 

Another limitation is the associated variational 

equation iteration. The influence of the mass on the 

deflection of the beams is observed to cause a decrease 

in the response amplitudes concerning both beams. 

However, the absolute maximum response amplitude 

is greater in the case involving lower beam due to a 

moving force. Increasing the stiffness parameter on 

the dynamic response of the beams is also seen to 

cause a decrease in the response amplitude due to both 

moving mass and moving force. The effect is lower in 

the case due to a moving mass. 
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