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ABSTRACT 

Dynamic response of Euler-Bernoulli beam subjected to concentrated moving load was investigated in this paper. The 
governing equation of fourth order partial differential equation was reduced to an ordinary differential equation using 
Series solution. The reduced second order differential equation was then solved using finite difference method. 
Numerical result was presented and it is found that the dynamic response of the beam initially moves in a steady state 
before deflecting and the deflected amplitude increases as the axial force, distance covered by the load, Mass of the load, 
speed at which the load moves increases but decreases as the length of the load, coefficient of the foundation increases. 
This study also conclude that R0 has no/little effects on the structure of the beam. 

Keywords: Amplitude, Axial Force, Concentrated Load, Euler-Bernoulli Beam, Finite Difference Method,  

INTRODUCTION 

In the recent years all branches of transport have 
experienced great advances characterized by increasing 
higher speeds and weight of vehicles (Awodola 2005).  
As a result, structures and media over or in which the 
vehicles move have been subjected to vibrations and 
dynamic stresses far larger than ever before. Many 
scholars have studied vibration of elastic and inelastic 
structures under the action of moving loads for many 
years, and effort are still being made to carry out 
investigation dealing with various aspect of the problem 
(Awodola 2007).   The structures on which these moving 
loads are usually modeled are by elastic beams, plates or 
shells. The problem of elastic beam under the action of 
the moving loads was considered. Willis (1951) made the 
assumption that the mass of the beams is smaller than that 
of the load and obtained an approximate solution of the 
problem. Yoshida (1971) studied the vibration of a beam 
subjected to moving concentrated moving using finite 
element method. A simple beam supported to a constant 
moving force at uniform speed was considered. Krylov 
(1995) used the method of expansion of the associated 
Eigen modes. He assumed the mass of the load to be 
smaller than that of the beam. Bolotin (1964) carried out 
a dynamic analysis of the problem involving a 
concentrated mass traversing a simply supported beam at 
constant speed. His approach involves using Galerkin’s 
method. The response of finite simply supported Euler- 
Bernoulli beam to a unit force moving at a uniform 
velocity was investigated by (Lee 1994). The effects of 
this moving force on beams with and without an elastic 
foundation were analyzed. In all the studies discussed 

above it was only the force effect of the moving loads 
that was taken into consideration. The moving load 
problem involving both the inertia effect as well as the 
force effects were not considered for several years. This 
type of dynamical problem was first considered by 
(Kalker 1993), later by (Jeffcott 2000) whose iterative 
method became divergent in some cases. Recently, 
(Esmailzadeh et.al 1995) worked on the vibration 
analysis of beams traversed by uniform partially 
distributed moving masses using analytical-numerical 
method. They discovered that the inertia effect of the 
distributed moving mass is of importance in the dynamic 
behaviour of the structure. The critical speeds of the 
moving load were also calculated for the mid span of the 
beam. 
The length of the distributed moving mass was also found 
to affect the dynamic response. The effects of the speed 
of the moving load, the foundation stiffness and the 
length of the beam on the response of the beam have been 
studied and dynamic amplifications of deflection and 
stress have been evaluated. Based on the Langragian 
approach, (Chang 2000) analyzed the vibration of a 
multi-span non-uniform bridge subjected to a moving 
vehicle by using modified beam vibration functions as 
the assumed modes. The vehicle is modeled as a two-
degree of freedom system. Obtained results are presented 
in form of dynamic amplification factors and compelled 
published results where applicable. The investigation 
into the dynamic response of a Bernoulli beam resting on 
Winkler foundation under the action of uniform partially 
distributed moving load was presented by (Usman 2003). 
Finite difference method was used to solve the coupled 
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partial differential equation, result revealed that the 
amplitude of the beam resting on Winkler foundation 
increases with an increase in the value of the foundation 
constant. (Usman 2013) investigated the dynamic 
behavior of Euler-Bernoulli beam with structural 
damping subjected to partially distributed moving loads. 
Analytical numerical method was used to solve the 
governing equation, it was observed from the result that 
the damping increased with increase in resultant solution 
at constant fixed length of the beam. (Savin 2001) 
derived analytic expressions of the dynamic 
amplification factor and the characteristics response 
spectrum for weakly damped beams with various 
boundary conditions subjected to point loads moving at 
constant speeds. The obtained coefficients are given as 
functions of the ratio of the span length to the loads 
wavelength and the loads wavelength respectively. 
(Pesterve et.al,2000) developed simple tools for finding 
the maximum deflection of a beam for any given velocity 
of the traveling force. It is shown that for given boundary 
conditions, there exists a unique response-velocity 
dependence function. They suggested a technique to 
determine this function which is based on the assumption 
that the maximum beam response can be adequately 
approximated by means of the first mode. Also the 
maximum response function is calculated analytically for 
a simply supported beam and constructed numerically for 
a clamped-damped beam. Friction dampers are another 
common passive vibration control systems which 
dissipate energy through friction forces. These forces are 
generated with moving parts by sliding over each other. 
The energy dissipated by a friction damper reduces the 
energy demand on the structure and damps the structural 
response. The friction damper system includes the 
friction unit and a structural system in order to integrate 
the friction unit with the structure. The structural system 
can be either steel braces bolted to corner regions of the 
open bay space in the frame or an infill wall with gaps 
around the edges to prevent stiffness interaction of the 
wall with the frame members. Friction dampers are used 
as sacrificial or non-sacrificial elements. Their utilization 
as sacrificial elements is a very common attitude in civil 
engineering environment. In earthquake engineering 
applications, some of the structural members might be 
sacrificed in order to prevent the collapse of entire 
structure. These structural members absorb and dissipate 
the transmitted energy through plastic deformation in 
specially detailed regions. Location of the friction 
damper and stiffness of the braces which are used in order 
to install dampers are the main factors that affect the 
design parameters of the damper. (Nguyen 2011) 
(Dahlberg 1999) uses the modal analysis technique to 
investigate the influence of modal cross-spectral 
densities on the spectral densities of some responses of 
simply supported beams. The random response of 

damped beams was studied by (Jacquot 2000). The 
author presents a method of vibration analysis using the 
response power spectral density function and mean 
square response of considered beam structures excited by 
a second stationary random process. (Kukla et.al, 1993) 
dealt with the random vibration of a clamped-pinned 
beam. The flux of energy which is emitted by the 
vibrating beam was investigated. (Papadimitriou et.al 
2005) provide a methodology for optimal establishment 
of the number and location of sensors on randomly 
vibrating structures for the purpose of the response 
predictions at unmeasured locations in structural 
systems. The author referees the results of considerations 
to randomly vibrating beams and plates. Its well known 
that damping becomes important when the need to have 
a thorough understanding of the control and mechanical 
response of vibrating structures arises. The problem of 
determining the dynamic response of a rectangular, 
damped, elastic plate carrying uniform partially moving 
load is investigated. The elastic plate is assumed to have 
uniform cross-sectional area. The effect of both rotatory 
inertia as well as shear deformation is assumed 
negligible. The moving partially distributed load is also 
assumed moving at uniform velocity. A constant 
damping coefficient is used throughout the analysis. 
Viscous damping whose coefficient is assumed to be 
directly proportional to the mass distribution of the 
system is considered in (Gbadeyan et.al 2002). An 
asymptotic analysis of eigen frequencies of uniform 
beam with both structural and viscous damping 
coefficient has also been carried out in(Hankum et.al 
1991) and (Huang 1985). 

Furthermore, (Kenny 1954) took up the problem of 
investigating the dynamic response of infinite elastic 
beams on elastic foundation when the beam is under the 
influence of a dynamic load moving with constant speed. 
Lie included the effects of viscous damping in the 
governing differential equation of motion. More recently, 
(Oni 1991) considered the problem of a harmonic time 
variable concentrated force moving at a uniform velocity 
over a Unite deep beam. The methods of integral 
transformations are used. In particular, the Unite Fourier 
transform is used for the length coordinate and the 
Laplace transform the time coordinate. Series solution, 
which converges as obtained for the deflection of simply 
supported beams. The analysis of the solution was carried 
out for various speeds of the load. 

(Awodola 2007) worked on the influence of 
foundation and axial force on the vibration of a simply 
supported thin (Bernoulli Euler) beam, resting on a 
uniform foundation, under the action of a variable 
magnitude harmonic load moving with variable velocity 
is investigated in the paper. The governing equation is a 
fourth order partial differential equation. For the solution 
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of this problem, in the first instance, the finite Fourier 
sine transformation is used to reduce the equation to a 
second order partial differential equation. The reduced 
equation is then solved using the Laplace transformation. 
Numerical analysis shows that the transverse deflection 
of the thin beam, resting on a uniform foundation, under 
the action of a variable magnitude harmonic load moving 
with variable velocity decreases as the foundation 
constant increases. It also shows that as the axial force 
increases, the transverse deflection of the thin beam 
decreases. Furthermore, (Milormir, et.al, 1969) 
developed a theory describing the response of a 
Bernoulli-Euler beam under an arbitrary number of 
concentrated moving masses. The theory is based on the 
Fourier technique and shows that, for a simply supported 
beam, the resonance frequency is lower with no 
corresponding decrease in maximum amplitude when the 
inertia is considered. (Usman et al 2018) presented an 
analysis of free vibrations of a cantilever beam and 
simply supported beam using series solution. It was 
found that the Deflection of beam increases as the length 
of the beam increases for a cantilever beam but decreases 
for the case of a simply supported beam. The response 
amplitude of a cantilever beam is greater than that of a 
simply supported beam. 

This study seeks to analyse the dynamic effect of 
vibration of Euler-Bernoulli beam on Winkler foundation 
subjected to concentrated load using series solution 
method. In order to achieve the set aim, the following are 
the objectives of this project work, which are: 

1. To theoretically represent Euler-Bernoulli beam 
subjected to concentrated load in the form of a 
fourth order Partial Differential equation. 

2. To find the analytical solution of the governing 
partial differential equation of the beam 

3. To determine the deflection of the beam subject to 
the initial and boundary condition of the system. 

4. To graphically represent the dynamic response of 
the deflection of the beam. 

MATHEMATICAL FORMULATION 

Consider a non-prismatic Rayleigh beam with 
damping coefficient of length L resting on a Winkler 
foundation and transverse by uniform partially 
distributed moving mass. The resulting vibrational 
behavior of this system is described by the following 
partial differential equation: 
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where    

    

 � = spatial coordinate 

 t = Time 

 �(�,�) = deflection of the beam 

 E = Young’s modulus 

 I = moment of inertia of the beam’s cross section about the neutral axis 

 δ = Foundation Constant 

 µ = Area per unit length of the cross section of the beam 

 µ0 = Shear Coefficient 

 �0 = Radius of Gyration 

 � = Axial Force 
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The differential operator 
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With the boundary conditions 

�(0,�)	= 	0	= 	�(�,�)     (6) 
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Without loss of generality, one can consider the initial conditions of the form 
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Method of Solution 
Assume a solution such that the transverse vibration of the beam may be expressed in the following series form 
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Furthermore, the forcing term f(x,t) defined in equation (2) can also be expressed as 
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To normalize equation (15), we multiply all through by ��(�) to obtain 
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Integrating both sides of (16) with respect to x along the length L of the beam, we have 
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From (17), we assume the following 
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Furthermore, expanding using Taylor series, we obtain, 
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To obtain a set of exact governing differential equation for the simply supported beam under consideration, we substitute 
(31) into (17) to obtain 

����
	 (�)� 	

�

�

�

���

��� �
��

�
�� ��� �

��

�
�� �� 

= − �
�

�
� 	���

��

�
�

�

�

�� �� − � +
�

2
� − � �� − � −

�

2
�� �� 

− 2�
�

��
���

�(�)� 	
�

�

���
��

�
����

��

�
�		

	

�

���

�� �� − � +
�

2
� − � �� − � −

�

2
�� �� 

− 4��
��

���
���

�(�)� 	
�

�

���
��

�
����

��

�
�		

	

�

���

�� �� − � +
�

2
� − � �� − � −

�

2
�� �� 

− 2���
����

���
���

	(�)� ���
��

�
����

��

�
�	

�

�

�

���

�� �� − � +
�

2
� − � �� − � −

�

2
�� �� 

 
Evaluating the above integrals, we have 

��� = ���
��

�
� �� �� − � +

�

2
� − � �� − � −

�

2
�� �� = 2��� �

��

�
�� ��� �

��

�
�� 

��� = � ���
�

�
����

�

�
�	

�

�

�� �� − � +
�

2
� − � �� − � −

�

2
�� �� 

=
1

� − �
	���

�

�
�(� − �)���

�

2�
�(� − �)−

1

� + �
	���

�

�
�(� + �)���

�

2�
�(� + �) 

��� = � ���
�

�
����

�

�
�	

�

�

�� �� − � +
�

2
� − � �� − � −

�

2
�� �� 

=
1

� − �
	���

�

�
�(� − �)���

�

2�
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1

� + �
	���

�

�
�(� + �)���

�

2�
�(� + �) 

��� = � ���
�

�
����

�

�
�	

�

�

�� �� − � +
�

2
� − � �� − � −

�

2
�� �� 

=
1

� − �
	���

�

�
�(� − �)���

�

2�
�(� − �)−

1

� + �
	���

�

�
�(� + �)���

�

2�
�(� + �) 

 

�� = � 	��� �
��

�
�� ��� �

��

2�
�� �� = �

1,					� = �
	

0,					� ≠ �

�

�

 

By substituting equations (33)−(37) into (32), we have 

���
	 (�) = 	��� �

��

�
�� ��� �

��

�
�� 
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(40) 

(39) 

− 2
�

��
���

��(�)�
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� − �
	���

�

�
�(� − �)���

�

2�
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�
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�
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�
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���

	(�)

�

���

�
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	���

�

�
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� + �
	���

�

�
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�
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� ≠ �,� = 1,2,3,…	 
By replacing the right hand side of (??) with the right hand side of (38), we finally obtain 

�� �
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�
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�
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�
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�
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�(� + �)���

�
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(41) 
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Numerical Analysis 

The numerical method alluded to is the central difference technique applying the central difference formula to the derivative 
in equation (??), we obtain 

��
��(�) =

����
	 − 2��

	+ ����
	

ℎ�
 

and 

��
�(�) =

����
	 − ����

	

2ℎ	
 

 
Substituting equations (43) and (44) into equation (42) , 
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further simplification gives 
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Where 
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RESULTS AND DISCUSSION 

The following example illustrates the analysis carried out in this paper. Beam dimension and specification: 

The beam was made of steel E=2.10×1011N 

Length(L)=10 m 

Density of the mass (ρ) = 1.64 × 108kg/m3 

Surface area of the beam cross section A=6×10−6m2 

Shear coefficient K=0.5, 1.0, 1.5 

Shear modulus G=0.2, 0.4, 0.8 

Distance covered by the load ξ=0.1, 0.2, 0.3 

Load’s length  

Modulus of shear foundation σG=0.1, 0.2, 0.3 
 

Rigidity of the Beam EI = 1.74 × 10−5m4 
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DISCUSSION 

 

Figure 1: The effect of R0 on the deflection of beam 

Figure 1 displays the dynamic response of the beam at various values of R0. It is observed that it first move in a steady 
state before deflecting and the deflected amplitude increases as R0  increases. 

 

2: M 
Figure 2 shows the dynamic response of the beam at various values of mass of the load. It is observed that the vibration 

of the beam initially moves in a steady state before deflecting and the deflected amplitude increases as the mass of the load 
increases. 



Usman M.A.  et al./LAUTECH Journal of Engineering and Technology 12(2) 2018: 107-122 
 

119 

 

Figure 3: The effect of ξ on the deflection of beam 

Figure 3 displays the dynamic response of the beam at various values of the length of the load. It is observed that the 
vibration of the beam initially moves in a steady state before deflecting and the deflected amplitude decreases as the length 
of the load increases. 

 

4:  
Figure 4 shows the dynamic response of the beam at various values of the distance covered by the load. It is observed 

that the vibration of the beam initially moves in a steady state before deflecting and the deflected amplitude increases as 
the distance covered by the load increases. 
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Figure 5: The effect of v on the deflection of beam 

Figure 5 shows the dynamic response of the beam at various values of the speed of the load. It is observed that the 
vibration of the beam initially moves in a steady state before deflecting and the deflected amplitude increases as the speed 
at which the load moves increases. 

 

Figure 6: The effect of δ on the deflection of beam 

 

Figure 6 shows the dynamic response of the beam at various values of δ. It is observed that the vibration of the beam 
initially moves in a steady state before deflecting and the deflected amplitude decreases as δ increases. 
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Figure 7: The effect of N on the deflection of beam 

Figure 7 shows the dynamic response of the beam at various values of the axial force. It is observed that the deflection 
of the beam initially moves in a steady state before deflecting and the deflected amplitude increases as the axial force on 
the beam increases. 

CONCLUSION 

Dynamic response of a Rayleigh beam was considered in 
this project work. The governing equation of fourth order 
partial differential equation was reduced to a fourth order 
ordinary differential equation by normalising the 
governing equation. The reduced second order equation 
was solved using finite difference method. The deflection 
for various parameters of the beam was considered and 
was plotted against x using a computer program 
(MATLAB). 

It can be concluded from the numerical results that the 
dynamic response of the beam initially moves in a steady 
state before deflecting and the deflected amplitude 
increases as the axial force, distance covered by the load, 
Mass of the load, speed at which the load moves increases 
but decreases as the length of the load, coefficient of the 
foundation increases. This study also conclude that R0 has 
no/little effects on the structure of the beam. 
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