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ABSTRACT 
This paper investigates the analytical-numerical method for solving nonlinear dynamical systems. The 
governing equation of partial differential equation of order four was transformed to Ordinary differential 
equation using analytical method. The finite difference method was used to transform the approximate 
governing equation. It was shown from the graph of deflection against distance that the deflection increases 
as the value of distance increases and also shown from the graph of deflection against time that the 
deflection increases with increase in time. The result is in agreement with the existing results. 
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INTRODUCTION 

 The moving load is an unavoidable 
difficulty in structural dynamics. The dynamic 
behaviour of beams on elastic foundations 
subjected to moving loads or masses has been 
investigated by many researchers in engineering, 
especially in Railway Engineering, Adel et al, 
(2011). The modern trend towards higher speeds in 
the railways has further intensified the research in 
order to accurately predict the vibration behaviour 
of the railway track, Dehestain (2009). These 
studies mostly considered the Winkler elastic 
foundation model that consists of infinite closely-
spaced linear springs subjected to a moving load, 
Fryba (1972).  

 The dynamic response of structures 
carrying moving masses is a problem of wide 
spread practical significance, Gbadeyan, et al, 
(1992). A lot of hard work has been done during 
the last 100 years relating with the dynamic 
response of railways bridges and highway bridges 
under the effect of moving loads, Ojih, et al (2014). 
Beam type structures are widely used in many 
branches of civil, mechanical and aerospace 
engineering, Gbadeyan, et al (1995). The dynamic 
effect of moving loads was not known until mid-
nineteenth century. When the Stephenson’s bridge 
across river Dee Chester in England in 1947 
collapsed, it motivates the engineers for research of 
moving load problem, Lueschen, et al, (1996), 
Michaltsos, et al. (2001), Gbolagade, et al, (2003). 

The simplest case of a moving load 
investigation is the case of a simple beam over 
which a concentrated load is moving, that is 
represented with a Fourth order partial differential 
equation, Jia-Jong, et al, (2000). This problem has 
significant effect in civil and mechanical 

engineering, Siddiqui, et al, (2003). The dynamic 
analysis of the vibrating beam is done by 
neglecting the disconnection of the moving mass 
from the beam during the motion and the result is 
given by considering mass moving at constant 
speed and in one direction, Muhamed, et al, (2007). 
Once the load departs from the beam, it begins to 
vibrate at in free vibration mode. Hence this 
process no longer comes within the scope of the 
experiment, Karghmovin, et al, (2004). 

The problem of moving loads on 
structures was first considered in the early 
Nineteenth century when the traversing of bridges 
by locomotives was analysed, this has been 
followed by a considerable amount of research on 
this topic, PiotriKoziol, et al, (2012). The purpose 
of dynamic analysis is to know the structural 
behaviour under the influence of various loads and 
to get the necessary information for design such as 
deformation, moments and dynamic forces etc. 
Structural analysis is classified in to static and 
dynamic analysis. Static analysis deals with load 
which is time independent, Ugural (1981). But in 
dynamic analysis magnitude, direction and position 
of mass change with respect to time. Important 
dynamic loads for vibration analysis of bridge 
structure are vehicle motion and wave actions i.e. 
earthquake, stream flow and winds, Mohan (2012). 

Lee (1998) studied extensively the 
dynamic responses of a beam acted upon by 
moving forces or moving masses, in connection 
with the design of railway tracks and bridges and 
machining processes, Foda, et al, (1998). The 
equation of motion in matrix form has been 
formulated for the dynamic response of a beam 
acted upon by a moving mass by using the 
Lagrangian approach, Umian (2009). Convergence 
of numerical results is found to be achieved with 
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just a few terms for the assumed deflection 
function, Kargarnovin, et al, (2004) also analysed 
the dynamic response of infinite Timoshenko and 
Euler-Bernoulli beams on nonlinear viscoelastic 
foundations to harmonic moving loads, Gurgoze, 
(2001), Seong-Min (2004). 

Mehri, et al, (2009) presented the linear 
dynamic response of uniform beams with different 
boundary conditions excited by a moving load, 
based on the Euler- Bernoulli beam theory, Kukla, 
(1997), Kukla, et al, (1994). Using a dynamic 
green function, effects of different boundary 
conditions, velocity of load and other parameters 

are assessed and some of the numerical results are 
compared with those given in the references, 
Kargarmovin, et al, (2005). 
 
MATHEMATICAL FORMULATION 

In this section, the dynamic response of a 
Bernoulli Beam on Winkler foundation under the 
action of moving partially distributed load is 
analysed and investigated. 

The resulting vibrational behaviour of this 
system is described by the following partial 
differential equations, Gbadeyan, et al, (1992). 

 
where  is the applied moving mass defined as 
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NOMENCLATURE 

Parameter  Description 

L Beam length 
EI Flexural rigidity of the beam 
E Modulus of Elasticity 
W(x,t) The lateral deflection of the beam measured upwards from its equilibrium when unloaded axial 

coordinate. 

x Axial coordinate 
K The coefficient of Winkler foundation (force per length squared) 
m The constant mass per unit length of the beam 
M The mass of the load 
t The time 

g  The acceleration due to gravity 
ϵ Fixed length of the beam 
 

Furthermore, the total derivative  which appears in equation (3.1) is defined as 

 
Where V is the constant velocity of the moving mass which is defined as 

 
is the Heaviside unit function usually defined as 

 
 
 
BOUNDARY CONDITIONS 
The pertinent boundary conditions for the problem under consideration can be any of the following classical 
boundary conditions. 

 
Finally, the initial conditions are: 

 
SOLUTION OF THE PROBLEM 

In this section, we proceed to solve the above initial boundary – value problem described by equation 
(1.0), (1,1) and (1.6) 

To this effect, we assume that the unknown initial deflection,  of the beam resting on Winkler 
foundation can be expressed as: 

 

Where  are unknown functions of time t and  are the normalized deflection curves for the jth mode of 
the vibrating non-prismatic beam. 
After taking the derivatives of equation (1.7), equation (1.0) becomes 
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At this juncture, it is remarked that the applied force can also be expressed as a series solution to equation 
(3.7)the we have 

 

Where  are unknown functions of time different from those . Equations (1.8) and (1.9) yield 

 

 

It is noted that equation (2.0) has two sets of unknowns viz: the ’s and the ’s. this naturally makes equation 
(2.0) highly coupled. To reduce his high degree of coupleness, we would have to determine one of the these sets 

of unknowns. We remark, however, that we find it convenient to determine the ’s. To this end, we first notice 
that equations (1.1) and (1.9) yield 

 

 

Next, multiply equation (2.1) by the unknown normalized deflection function  and then integrate the 
resulting equation over the length of the beam to obtain 

 

 

 

 
 
Next substituting equation (2.2) into equation (2.0), the approximate governing equation is found to be 

 

 
          (2.3) 

To simplify equation (2.3), we noted that for free vibration of an Euler-Bernoulli beam, we have 
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and   is the square of the jth natural frequency of the beam. 

For arbitrary , we have 

 
          (2.6) 

Equation (2.6) is the desired set of coupled second 
order differential equations. By solving these 

equations in (2.6) for ’s and substituting the 
resulting expression into equation (1.7), the desired 
solution for the vibration of the beam under 
different boundary conditions and with any number 
of modal shapes can be determined. 
 
SIMPLY-SUPPORTED BEAM 

To solve the above coupled equation (2.6), 
we need to know the exact form of the normalized 

deflection . As a matter of fact, there is exists 

various turns of  depending on the vibrating 
configurations of the beam. In other words, the 
solution of equation (2.6) depends on the associated 

boundary conditions as the exact form of  
depends on the type of boundary conditions under 
consideration. 

Hence, as an illustrative example, we 
consider a beam which is simply supported that is a 
beam whose boundary conditions are given as 

 
It is well known that for a simply supported beam 

 
Direct substituting of (2.8) into (2.6) will yield the desired governing equation which is, however an 

approximate one. It is remarked, that for the configuration under discussion an exact differential governing 
equation can be derived by going through arguments similar to those used in obtaining equation (2.6). 

 

 

After integrating equation (2.9) for arbitrary , we obtain 
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We now use the finite difference method in order to solve the above equation numerically, we made use of 
approximate central difference method, we obtain. 

                       (3.1) 

NUMERICAL RESULTS 

The result obtained in equation (3.1) for nonlinear 
dynamical systems subjected to partially 
distributed load is discussed in this chapter using 
analytical-numerical method. Which made use of 

approximate finite difference method and 
MATLAB was used for the values of the variable 
used and the following graphs were plotted as 
shown in figures 1.1- 1.8. 
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Fig 1.1 

 

It is found that as the value of deflection increases 
and the value of distance increases there is a 

decrease in velocity deflection at K=2. 

 

Fig 1.2 

 

It is found that at a constant value of time (t) the 
deflection increases and also decreases at k=2. 

 

Fig 1.3 

 

It is found that as the value of deflection increases 
and the value of distance increases there is a 

decrease in velocity deflection at K=4. 

 

Fig 
1.4

 

Deflection against distance at various values of K, 
which shows that at a constant value of velocity 
deflection increases as the value of K increases. 
This was in agreement with the existing result. 
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Fig 
1.5

 

It is found that deflection decreases against 
distance at a constant value of x at K=2. 

 

Fig 
1.6

 

Deflection against time, it was found that the 
deflection decreases first and later increases at 

different time (t) when K=4 

 

1.7 Deflection against time, it was found that the 
deflection decreases first and later increases at 

different time (t) which was the same result we are 
given in Fig 1.6. 

 

 

 

1.8 Deflection against time When K=2 at various 
values of velocity V= 9.3, V=6.3 and V=3.3 at 

constant value of K deflection reduces as velocity 
increases. 
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NUMERICAL DISCUSSION 

The dynamic response of nonlinear dynamical 
systems were considered. Also the systems were 
subjected to partially distributed load is observed 
for various values of deflections against time, at 
constant value of K deflection reduces as velocity 
increases and also for deflection against distance, at 
constant value of velocity deflection increases as 
the value of K increases.The results obtained 
were compared with the existing result. 
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