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ABSTRACT

Dynamic programming technique was used in the simulation of Obafemi Awolowo University
Campus water supply system to generate the maximum cumulative returns from sales of water to the
people around for a seasonal planning period of a year. Major parameters necessary in the
optimization of the reservoir system viz: reservoir size; rates of evaporation, siltation and seepage;
streamflow characteristics and scheduled release of water, were considered as constraints. The cost
Sfunctions expressed in Monetary Unit (MU) were derived for the sales of water. The objective
Sfunction was optimized taking into consideration the probabilistic inflow of water into the reservoir.
The maximum cumulative returns for the various combinations of: the state of the reservoir at the
beginning of the planning period (S1); the inflow into the reservoir during the rainy season (I1) and
the inflow into the reservoir during the dry season (12), were computed and analysed, with the
optimal policies for the various possible combinations obtained.

The maximum cumulative return from sales of water from the computer simulation result was found
to be 8,868,570MU. This occurred when there was peak seasonal inflow into the reservoir and a
decision to release 3,878,935 m’ of water, made during the planning period.

Kevwords: Dam reservoir water supply system, Major parameters, Monetary Unit (MU), Optimal policy.
Reservoir system.

INTRODUCTION

Opa river dam, a residual earth embankment, is
located on the western side of Road 1. just North of
the main pumping station of Obafemi Awolowo
University (O.A.U.) campus, Ile-Ife in Osun State of
Nigeria. The construction of the dam in the early
seventies on the Opa River by the University was to
be able to supply the campus adequate potable
water. The water supply situation in the campus was
good until around mid-eighties when dwindling
available water resources, coupled with population
explosion, made the situation to deteriorate. The
University came up in 1988 with a plan to sell water
to some categories of people to generate funds to
sustain its waterworks. However, there was increase
in water demand and the number of subscribers
gettimg  larger.  The following  issues became
pertinent: whether the sales of too much water will
not jeopardize the community’s water supply m the
event of hitle flows: and whether a commitment to
supplving the University community adequately as
weil as generating maximum returns from sales of
waicr could be niet

This paper therefore tackles the issue of how
much water the Opa waterworks should release each
season in order to maximize its returns from sales of
water, without jeopardizing the reservoir operations.
The paper formulates a reservoir management model
based on probabilistic values of streamflow, employs
dynamic programming technique to solve the model
and puts the model to work by finding optimal set of
rates and optimal series of water releases for the
planning periods.

Mathematical optimization techniques have
been successfully applied with the aid of digital
computers to a wide variety of science and engineering
problems. Typical problems in the field of water
resources have been solved and optimization
technmques presented for plannmng.  design  and
management of complex  water resource systems
involving  thousands of decision  varnables  and
constraints  (Bower. Hufschidt and Reedy. 19062
Dortman, 1962: Ladson. 1970; Beard. 1972; Miktell.
1977. Turgeon, 1980; and John, 1998). Direct
apphication of dynamic programmung approach to
solving water resource systems as formulated by
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Bellman and Buras is reported by Meredith et.al,
(1973), where the popularity and success of the
technique was attributed to the fact that the
nonlinear and stochastic feature which characterize
large number of water resources system could be
translated mto a dynamic programming formulation.
Also. the advantage of effecuvely decomposing
highly complex problems with large number of
variables mnto a series of subproblems. which are
solved recursively, has been explored by
Christensen and  Soliman  (1986). Several
approximation techniques to cater for problems
necessitated by large numbers of computer
programming time steps through the successive
approximation, incremental dynamic programming
and corridoring techniques have been proved by
Jamshidi and Mohseni (1976). to be successful and
reliable.

METHODS

Problem Formulation.

In formulating the objective function for
maximizing returns from sales of water, some
factors were considered. These factors include: the
estimation of the quantity of water required per
season by the university community; estimation of
the ratio of the quantity of water sold for thirty
monetary units to the staff of Obafemi Awolowo
University to that sold at thirty-five monetary units
for personalities in Ife town and environs; the unit
cost of damage from flood overflow when the
reservoir capacity is exceeded: rate of evaporation,
secpage and siltation; capacity of impounding
reservoir and probabilistic inflow into the reservoir.
The seasonal time step has been fixed for six months
- May to October for the rainy season and
November to April for the dry season.

The Objective Function

The objective function for the system under
consideration is:

L[] =Z, [Th]) + Z,[T3] ...

(N

In which Z,, Z, and Z; are cost functions expressed

in Monetary Unit (MU)

Z; = maximum cumulative return from sales of
water obtainable for the time period from T, to
T}.

Z, = maximum return that could be obtained from
sales of water for the period from T, to T,.

Z, = maximum return from sales of water for the
period from T, to Ts.

T, = period at the beginning of the raining season,

and hence the beginning of the design period.

T, = period at the end of the raining season,
comnciding with the beginning of the dry
season.

T; = period at the end of the dry season and hence
the end of the design period

Expressing the cost functions individually. we have:
Zy=444a (x,-n)+ 519 f (x,—n) - 0.10w,... (2)
Z:=444a (x-n) + 519 (x,—n) - 0.10w, .. (3)

Substituting equations (2) and (3) mto equation (1), we
have,

N
Zi= Y 44da (x-n)+ 5109 B(x,-n) - 010w, (4)

In which:

= estimated fraction of water sold to O.A.U.
staff.

B esumated fraction of water sold to
personalities in Ile-Ife town and environs.

Xi= quantity of water scheduled for release during
systemtime T;to T, .,

R estimated quantity of water reserved cost-free

for the use of O.A.U. Community during
systemtime T, to T, . ;.

W;= flood overflow during system time
Tttt

1= period index', = i=1,2

N = maximal length of the planning period (one
year)

Constraints on the System
The system constraints employed in this optimization
problem are:

R everiie B AERE_E D W, (5)
JSM =2.797.029 ... (6)
0<S, <2797,029 (7) y
1,000,000 < x; < S;+ L~ E,-P,—F,... (8)
S,+1, > 1,000,000+ E,+P, +F, ... (9)
Syetdsi>) 1,0000004E;+ P, + F, ... (10)

Sialiril 2 2000.000°E, + P, + F; + Ey + P2 % F,
e (11)
S; = 1,000,000 + E, + P; ... (12)

2,322 <F, < 4644 (13)

376,339 < E; < 514,871 (14)

444 < P, (15)

W, 20 (16)

Where:

Si.; = state of the reservoir at the end of period T,

JSM = maximum capacity of impounding reservour

Si= state of the reservoir at period T,

7= probabilistic inflow into the reservoir during
system time T, to T;,,

F,= rate of siltation for time T,to T,.,

E = rate of evaporation for ume T, to T,

P, = rate of seepage for ume T,10 T,

W, = flood overflow during system ume T,to 1,

S: = reservoir level at the end of the planning

X, = scheduled release of water during peniod 110 T
Tables 1 and 2 present the input vanables and the
system constraint-matrix respectively, for the reservon
optimization model.
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Governing Equations

The mathematical solution technique employed n_
soiving the optimization problem emanated from the
nature of the objective function and the governing
constraints. The cost function. Z;. which represents
the maximum cumulative return if the system state,
S;. at time Ts1s given by:

Maximize — Z, =Z (4.72 (X, - 1.000.000) -

=1

0.10W,) ... (7
Subject to:
Sir=8- X + k- Fi=Bi=P-W; 00 (18)

Table 1: Input Variables for the Reservoir Optimization Problem.

| «S/NI input variabies Numerical values per season (m')
1 F, 2322
2 E, 376339
3 P 444
4 JISM 2797029
5 Fiy 4044
6 Ei 514871
7 Py 444"

Table 2: System Constraint-Matrix for the Reservoir State Model.

Variables as multiples of JSM X; X

SN Si I; Ly Sie1 (m’) (m’)

I 0.00 0.25 0.00 0.00 0320152.25 0179296.25

2 0.25 0.50 0.25 0.25 1019409.50 0878553.50

2 0.50 0.75 0.50 0.50 1718666.75 1577810.75

4. 0.75 0.00 0.00 0.75 2417924.00 2277068.00

3 1.00 0.00 0.00 1.00 311718125 2976325.25

6. 0.00 0.00 0.00 0.00 3816438.52 3675582.50

7 0.00 0.00 0.00 0.00 4515695.75 0000000.00
0<S; <2797.029 ..(19) releases can be. Equation 22 states the minimum
0<8S;, <2,797.029 .. (20) quantity of water the storage reservoir must handle for
1,000,000 < x; < S;+ ;- E;-P,-F; . (21) the entire planning period. Equations 23 and 24 specify
S, +L+1 > 2899066+ S; . (22) the minimum quantity of water the storage reservoir
S, +1, > 1,379.105 , - (23) must handle during the raining and dry seasons
S,+1, = 1,519,961 . (24) respectively.
S; 2 1,515,315 -- (25) Equation 25 specifies the minimum quantity of water
2322 < F; < 4644 .. (26) that must remain in the storage reservoir at the end of
376,339 < E; < 514,871 =(27) the planning period. Equations 26 and 27, specify the
444 < P; .- (28) lower and upper limits on the rate of siltation and
W, >0 .. (29) evaporation respectively. Equation 28 specifies the

Algorithm for Solution

The objective function as depicted by Equation 17 is
to be maximized by varying X; Equation 18 is the
transformation equation which defines the state in
which the reservoir will be at T;,; if the reservoir
state at 1, i1s S;, X; cubic metres of water are
released, I; cubic metres of water received as inflow,
F, cubic metres of sediments deposited, E; cubic
metres of water lost to the atmosphere, P; cubic
metres of water seeped into the ground and w; cubic
metres of water lost as flood overflow over the
spillway. Equation 19 and 20 limit the state of the
reservoir at times T; and T, respectively, to
somewhere between empty and full. Equation 21
specifies the lower and upper limits on what the

lower limit on the rate of seepage, and equation 29
states that flood overflow cannot be negative.

RESULTS

Using the numerical values defined as input data in
Tables 1 and 2, and equations 17 to 29, the dynamic
programming problem was simulated using a
Microsoft Watfor77 compiler on a Pentium III desktop
computer. The computer program listings coded in
FORTRAN language is in Appendix 1. The output of
the simulation exercise as presented in Appendix 2 is
rearranged in Table 3. For each combination of S, I,
and I,, the returns for the entire planning period are
tabulated under appropriate sub-headings. A graphical
concept with the optimal paths clearly shown has been
used to amplify the results generated by the computer,
as depicted by Fig. 1.




Table 3: Optimal Policies and Optimal sct of States for the Various Combinations of S, I, and I,.
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Optimal series of water ' Cumulative

{-S/N Possible combination of initial Optimal set of reservorr states i
! reservoir state and hydrological i (m") | releases i m’ (optimal | return  (MU)
| i inputs (m ) | i policy) | from sales of
‘ : i i water.
| s, R, g = e 5 | X, [ X, |
' g 1398515 2097472 1398515 1398515 2097772 1515315 1019410 1461010 I 2267581
2 2097772 1398515 1398515 2097772 | 2097772 1515815 1019410 1461010 | 2267581
} 3 | 2097772 2097772 699257 2097772 2797029 1515315 1515315 1461010 { 2267581
| 4 2097772 2097772 1398515 2097772 2097772 15153 15 1718667 | 1461010 : 5568075
! 5 2097772 ! 2097772 1398515 2097772 | 2797029 1515315 E 1S53 | 1019410 j S568075
6 } 2097772 2097772 1398515 2097772 3 2797029 2097772 ' 1019410 | 1577811 2818880
i i | ! '
7 2797029 699257 1398518 2797029 ‘ 2097772 1515315 1019410 1577811 | 2818880
8 2797029 1398515 699257 2797029 2797029 1515315 1019410 1461010 } 2267581
| 9 2797029 1398515 1398515 2797029 2097772 1515315 1718667 1461010 } 5568075
10 2797029 1398515 1398515 2797029 2797029 151 530S 1019410 2160268 E 3568075
11 2797029 1398516 1398515 2797029 2797029 2097772 1019410 1577811 | 2818880
l 12 2797029 2097772 699257 2797029 2797029 IS1551S H 1718667 I 1461010 255()8()75
' 13 2797029 2097772 2097772 13298515 2797029 2097772 ' 15315315 2417924 ] 8868570
i 14 2797029 2097772 2097772 2797029 | 2797029 ISIS31S ‘ 1718667 | 2160268 8868570
i i : , ; i
i 15 | 2797029 2097772 2097772 ! 2797029 2797029 2097772 i 1718667 | 1577811 % 6119374
DISCUSSION the reservoir at the beginning of the planning period as

|

It can be observed from Table 3 that the
minimum reservoir level at the end of the planning
period has been maintained at 1,515.315m’ of water
to ensure that the umiversity community has
adequate supply of water in case of httle flows for
the next planning stage. In this regard, the optimal
policy for the entire planning period is that path that
led to the maximum cumulative return when the
quantity of water in the reservoir is 1.515315 m*. A
study of table 3. also reveals that the initial state of

well as the probabilisuc nflow due to the
environmental input have had a strong influence on the
optimal policy. These have been verified in terms of
the number of possible combmations of S,. 1, and I,
truncated by the computer simulation. While the inflow
due to the environmental mput can only be estimated
via hydrological analysis of sufficient number of ycars
of stream flow data, the scheduled release of water
could be determined, guided by a desire to opumize
returns. The series of releases made to fultill this desire
constitute the optimal policy. as depicted in table 3. All
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the computed values for the optimal set of reservoir
states and optimal series of water releases have been
confirmed to satisty the constramnts imposed on the
objective function. It follows theretore. that tor any
given values of S1. Il. and 2. therec 152
corresponding optimal policy that will gencrate the
maximum cumulative returns from sales of water.

The maximum cumulative return ever.
which could be obtained, is 8.868.570MU". and this
would occur when the reservoir 1s full at the
begmning of the raming season, as tllustrated n Fig.
1.

CONCLUSION

In  this  paper., dynamic programming
technique has been used to optimize the reservoir
hold-up and  water releases throughout an
operational twelve-month period. The optimal policy
so derived could guide the management of Opa
Waterworks on the gquantity of water to reledse o
optimize return from sales of water without
jeopardizing the reservoir operations. The modet has
three major hmitations. The first 1s that the model
uses seasonal time steps. This precludes detailed
consideration of hourly phenomena. Therefore,
transient  phenomenon  such as  flood peaks 1s
stimulated 1in an approximate way to include their
overall impact on the seasonal results. The second 1s
the determunistic character of the model which gives
it complete foresight over the puts. It allows the
use of only one specified project year and one
hydrologic year at a time. The effects of these
limitations on the results have not been fully
explored as only quarterly incremental reservorr
capacities have been used. The third hmitation 1s
that a global opimum cannot be guaranteed as the
quantity of inflow nto the impounding reservorr for
the planning pertod 1s uncertamn. In the near future,
when adequate and _sufficient data have been
gathered. 1t 1s recommended that shorter time steps
and supertor hydrologic mput forecasts be used in
the _optimization process to improve the optimal
policy.
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