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ABSTRACT

Numerical simulations of spherical draplets sedimenting in a Newtonian fluid in an unboundcd rec
were investigated by using finite element method for Reynolds number up to 300. The compurar:
are thereby carried out with the penalty method instead of the integral method. The effect of 1
viscosity ratio 1 in the range 0.02 < n* <1000 and the density ratio p* in the rang
0.02 < p* < 1000 on the wake formation and development was studied. It was observed that no wake
is formed behind a droplet when the viscosity ratio n* is below 2.3. The critical Reynolds number for
a droplet with fluid properties p* = 1 and n* = 50 and another droplet with fluid propertics
p* = 1000 and n* = 50 is the same, and is 28.5. The viscosity ratio thus has strong effect on wake

Sformation while density ratio has an insignificant effect. Further results show that the wake length and

the angle of separation depend very strongly on the viscosity ratio. The results are very useful for the
design and optimisation of engineering equipment where droplets occur.
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Nomenclature

4 Area of projection of a droplet, (m’)

iy Drag coefficient

da Diameter of the droplet, (m)

6 Total drag force, (N)

F Matrix for the boundary conditions

g Acceleration due to gravity, (m's’)

A Continuity matrix

Mp Pressure matrix

N(u) Matrix of the discretised convective term

p Pressure, (N/m’)

r Horizontal coordinate

R Radius of the drop, (m)

Re Reynolds number

3 Dissipation matrix

u Vector of unknown velocities u, and .. (m's)

It Horizontal velocity. (nmv's)

u Vertical velocity. (n/s)

U Velocity at infinitely far distance from droplet, (nvs)

z Vertical coordinate ¢

G reek Symbols

o Residual or error

v =ihe Penalty parameter

1 Viscosity of the continuous phase, (Pas)
Viscosity of the dispersed phase, (Pas)

17> 2l by, Viscosity ratio

o Density of the continnous phase. (kg'm’)

Jor Density of the dispersed phase. (kg/m')

£ oo Density ratio

1 Stream function, (m’'s)

0 Soltion domain :
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INTRODUCTION

Droplet 1s a basic object in industral
processes. It occurs i many modern technologies
such as in carburation as a prelude to combustion,
ink jet printing. spray drying, net shape forming, in
ore treatment (tlotation). in biotechnology (inverse
fluidised-bed  bioreactor), and in  micro-
encapsulation and manufacturing. It has thus
become the object of research for many engineers
and scientists in the past few decades. In the past,
the fluid dynamics of solid sphere has been
extensively investigated. Examples of published
works on flow over solid spheres are those by Lin
and Lee (1973), Pruppacher et al. (1970), and
Taneda (1956). Investigation of the viscous flow
past hiquid droplets has gained increase attention.
Published works on fluid dynamics of liquid
droplets include those by Feng and Michaelides
(2001), El-Shaarawi et al. (1997), Wham et al.
(1997), and Frohn and Roth (2000). The increase
research work on droplet is due to the fact that a
thorough knowledge of the fluid flow in and
around a liquid droplet is of central impurtance to
the study of heat and mass transfer between the
droplets and the surrounding phase. The designs
and the optimisation of engineering equipment
involving fluid flow, heat and mass transfer have
been done in the past by relying purely on both
experimental and theoretical methods. But the
theoretical analysis of the dynamics of droplets has
been limited to creeping (Hadamard, 1911,
Rybczynski, 1911), potential and boundary-layer
flows (Chao, 1962), while the experimental work
on single droplet seem almost impossible due to its
small size (Sirignanoi, 1993). The most seemingly
fruitful solution approach to the intermediate flow
regime of the system i1s that based on numerical
computation. The past works on the two-phase
flow between a single droplet and the continuous
phase system have concerned themselves with the
computation of the drag force and coefficient for
gas bubble, solid sphere and also to very limited
cases for the liquid droplets with very high ratio of
the viscosity between the droplet and the
continuous phase 7', e. g. water droplet in air
(Sirignanoi, 1993: Brander and Brauer, 1993;
Oliver and Chung, 1985).

While wake formation behind a solid sphere
has been investigated extensively (Taneda,
1956), the phenomenon of wake formation and
development behind a droplet has not been
- thoroughly studied. Wakes formation behind a
droplet has been attributed to the effect of mass
transfer process between it and the surrounding or
as a result of fluid flow (Garner and Tayeban,
1960).

The present work 1is concerned with the
investigation of the effect of the fluid properties on
the wake formation and development. The effects

of the density ratio p*. the viscosity ratio 7 and
Reynolds number on the wake length and, on the
angle of separation are thoroughly mvestigated. The
obtained results are important for the better
understanding of processes in which droplets are
rising or falling in an unbounded fluid.

THE PHYSICAL SYSTEM AND THE
MATHEMATICAL FORMULATION

The period of droplet life during free nse or
fall with a velocity «,. through a conunuous phase is
simulated in this work. For the purpose of the
numerical simulation of the motion, a droplet fixed at
a position in the stream of a flowing unbounded fluid
is assumed. The flow configuration is illustrated in
Figure 1. The flow at infinitely far away distance
from the droplet is assumed uniform and its velocity
is assumed equal to u,. The droplet 1s assumed
spherical and has a constant diameter dy, density py
an | viscosity 7. The continuous phase has different
fluid properties, 1. e. different density p. and viscosity
7.. The two phases are assumed immiscible or partly
nmuscible with each other and both behave like
Newtonian fluids. The flow in the continuous phase 1s
communicated to the droplet through the interface as
a result of which there is mternal circulation inside
the droplet. The following dimensionless relation
holds for the system:

Re, = Redn—,, 1

yo)

where Re. and Re; respectively represent the
Reynolds number in the continuous phase and in the
droplet, ;7" the ratio of droplet to the continuous phase
viscosity, and p the ratio of droplet to the continuous
phase density. The flow of the two-phase system can
be fully described by the complete steady-state
Navier-Stokes  equations  for the  viscous,
incompressible flow.

The two-phase flow problem being considered here 1s
solved using the axisymmetric coordinates, which
implies that the spherical drop reduces to a half circle
in the (7, z) coordinates. This assumption is justified
up to Re. = 300 as discussed by Pruppacher et al.
(1970). The physical system is thus best described by
Navier-Stokes equations and the continuity equation
for an incompressible viscous fluid in the cylindrical
coordinates in two dimensions. The Navier-Stokes
equations in this coordinate are:

p( Ou, &lrJ (5 du,
u—+u— |=——+1 —+
- R or o

la, du u 2
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In the above equations, p and 7 represent the
pressure and the fluid viscosity, «, and .
respectively the velocity in the r- und z-direction.

The numerical simulation of a flow problem
required the prescription of the prevailing boundary
conditions. These conditions for the case of a
steady lamnar flow of an incompressible
Newtonian fluid past a liquid droplet are prescribed
at an infinitely far distance from the droplet, at the
droplet interface and at the symmetry line as
follows: (1) The flow is assumed to be symmetric
with respect to the z-axis. (it) The interface
between the droplet and the surrounding fluid is
assumed smooth. The size of the droplet 1s constant
and its shape is spherical. (ii1) The velocity of fluid
inside the droplet at » = 0 must remain finite, i.e. i,
= 0, u, # 0. (iv) The tangential stresses at the
mterface between the two fluids must be equal. (v)
The inflow velocity at sufficiently far distance from
the droplet 1s uniform and is equal to «, .

The steady flow of an isothermal tluid is fully
described if the velocities, the pressure and all the
fluid properties are known at every point of the
flow field. In practice, the flow field is normally
presented in a graphical form through streamlines,
lines of constant value of stream functions, which
are drawn such that they are tangential to the
velocity vector at each point in a flow field. A
stream of constant volume flow rate flows between
two streamlines (Bird et al., 1960).

Solution Technique

In this work, the governing equations are solved,
by using the finite element method. This method is
a numerical analysis technique for obtaining
approximate solutions to a wide variety of
engmeering problems. In this method, the flow
ficld 1s divided into many small elements of
convenient shapes and the unknown field variables
are expressed m terms of assumed approximating
(interpolation) functions within each element. The

elements are connected together with one another
through the nodes.

The solution of a partial differential equation through
the finite element method 1s done by foremost casting
the equation mnto an integral form. This 15 done. by
using either the variational method or the method of
weighted residuals. The method of weighted residuals
1s the most convenient tool to transform the Navier-
Stokes equations nto integral form because the
variational principles cannot be found for the
equations. To apply the method of weighted residual
for the solution of the Navier-Stokes equations, the
velocities and pressure on each node of every element
1s approximated as follows

W

n
— 7
u,=N-u, = ZA’: i .

i=1

i
=
I
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=
=
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=
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The parameter A, in the above equations denotes the
interpolation function, n the number of nodes per
element, and p, u, and u. respectively represent the
pressure, the 7- and the z- component of the velocity.
Since the expressions in equations (5 - 7) only give an
approximation of the actual values of the unknown for
each node of every element, the substitution of these
expressions in the Navier-Stokes and the continuity
equations result in residuals or errors o, These
residuals are mimmmzed or forced to vanish over the
solution domain (2 by constructing an inner product
(oi. W) between the residuals o, and the weighting
functions W, and setting this product equal to zero:

(6.W)= [ a2 =0. 8

By the application of the Galerkin method, which is
the most often used method to derive finite element
equations 1n any problem involving fluid flow. the
weighting functions are chosen to be the same as the
interpolation function. The integration of the resulting
expression over the element gives:

S°u+N°(u)u +L"p=F° 9

Lty | {0

The symbol u denotes the discretised velocity vecior,
S the dissipation matrix, N" the convective matrix,
L the pressure matrix, which 1s a transpose of the
continuity matrix, and F° the matrix containing the
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boundary conditions. To reduce the number of
equations that should be solved, the flow system
was solved numerically together with the
prescribed boundary conditions by using the
penalty technique (Cuvelier et al., 1986). With this:
technique, the numerical simulation is greatly
enhanced and thus. the computing time and the
memory space required for computation are
considerably reduced. The solution of the velocity
field 1s obtamed by the penalty technique through
the expression:

Su+ N(uu+ LM Ly =F* 1
E

The parameter 1/&, depict the penalty parameter.
The pressure p 1s obtained as a derivative of the
velocity through the expression:

p=-tM Lu. 12

The simulated area is discretised into many
1soparametric  triangular elements with each
element having six nodal points. The matrices for
all the elements were assembled and solved
iteratively. A total of 5,693 isoparametric triangular
elements were used in computation. This
corresponds to a total of 11,552 nodal points out of
which 4881 nodes were positioned in the drop.
Equation 11 1s a non linear equation. Its
linearisation is done, by using Newton’s iteration
method. This method converges quadratically, but
a good initial estimate is required which is obtained
by solving the Stokes equations and next by
iterating the equations through Picard’s iteration
method (Cuyelier et al., 1986).

RESULTS AND DISCUSSION

In order to validate and to demonstrate the
accuracy of the present simulations, the computed
flow fields are compared with existing results. This
accuracy test is done by computing the drag
coefficients of both solid spheres and liquid
droplets, and comparing them with other results.
The drag coefficient Cp of a solid sphere or
spherical drop'et is defined as follows:

F/A
gymtil= 5
pcUs /2

The parameter 4 is the area of projection of the

solid or liquid sphere and is given as 72'(15 /2. the

a
product pcu; /2 is the dynamic pressure and F

1s the total force acting at the surface of a solid or
liguid sphere.

The computed drag coefficients for solid sphere are
compared with  both the numerical and

experimental data from Schlichting and Gersten
(2000), and the numerical results from Tabata and
Itakura (1995). The comparison is presented in Table
1. A close agreement between the present results and
the other data can be seen in the table. The drag
coefficients of liquid droplets with viscosity ratios
n*=1 and n* = = are compared with both the data
from Rivkind et al. (1976) and, Feng and Michaelides
(2001) in Table 2. The results agree fairly well with
both data, establishing that the results of the
computations give a good presentation of the flow
field. The variation of drag coefficient of lhquid
droplet with wviscosity ratuo for various value of
Reynolds number, are presented in Table 3. The
general trend of the results is that the drag coefficient
decreases with increase in Reynolds number for a
fixed viscosity ratio. For a particular Reynolds
number, the drag coefficient increases with viscosity
ratio.

The flow field is presented here in the form of stream
function for easy visualisation. Figures 2a and 2b
depict the stream function field for a Reynolds
number of 100 and, a viscosity of 1 and 10
respectively. The figures show that both for n* =1
and n* =10, a well defined and simple recirculation
flow occur in the droplets. The external flow is,
however, a bit complex, being characterised by wake
formation behind the droplets for n*=10. A
comparison of the two flow fields suggests that
viscosity ratio plays a significant roll on the flow
inside and outside a sedimenting droplet.

Figure 3 presents the dependence of the critical
Reynolds number (1. e. the Reynolds number at which
wake first begins to form behind a droplet) on the
viscosity ratio. It is seen that at a low viscosity ratio, a
wake begins to form only at high Reynolds numbers.
An increase in the viscosity ratio leads to the
formation of the wake at lower Reynolds numbers.
No wake was formed when the viscosity ratio is less
than 2.3. This result established the conjecture of
Wasowski and BlaBl (1987) and Haas et al. (1972) that
a wake can only form behind a bubble (a bubble is a
droplet that has a viscosity ratio that is less than unity)
if it is deformed and not when it has a spherical shape.
The dynamics of a droplet without ary -wake
formation is a consequence of unhindered impulse
transfer through the interface of the droplet as
compared with the one that exhibit some resistance to
the transfer. The internal circulation of a droplet with
a high viscosity ratio is greatly impeded by small
impulse transfer through the interface.

T“
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Figure 1: Schematic diagram of a liquid droplet sedimenting in a continuous fluid.

{a) (b)

Figure 2: Flow field inside and outside a drop by Re = 100, p* = 1 and (a) #* = 1 and (b) n* = 10.
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Figure 3: Critical Reynolds number for wake formation as a function of viscosity ratio for p = 1.

I'igure 4: The simulated streamlines around a solid sphere for Re, = 50.
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Water drop (n = 48.14; p = 852.31):

this work
®  Brander und Brauer (1993)

Solid Sphere:
------ this work
® exp.data- Taneda (1956)

Water drop (n’ = 48.14: p  =852.31) :
this work
= Brander und Brauer (1993)

Solid Sphere:
------ this work
® exp.data- Taneda (1956)
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5: Comparison between the normalized wake length of solid sphere and that of water droplet.
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Figure 6: Comparison between the angle of separation for solid spherc ard that of water droplet.
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Table 1: Comparison of the Drag Coefficient of Solid Sphere with Numerical and
Experimental Data.
Drag Coetticient, €y,
Re This work Schlichting and Tabata and Itakura
Gersten (2000) (1995)
10 4.3351 4.35 4.3159
20 27380 279 20125
40 1.8037 1.84 1.7924
50 1.5824 . 1.61 1:5791
100 1.0918 1.11 1.0900
150 0.8906 0.918 0.8893
200 0. 7731 0.807 0.7722

Table 2:  Comparison of the Drag Coefficient of Spherical Liquid Droplets with the Numerical
Results from Rivkin et al. (1976) and, Ferg and Michaelides (2001).

nh= n* =
This work Rivkin et al. Feng and This work Rivkin et al. Feng and
Re (1976) Michaelides (1976) Michaelides
(2001) (2001)

1 22.3599 224 224 27.3153 274 27:3

10 3.3705 3:33 3.34 4.3599 428 4.30

20 2.0481 2.05 2.04 2.7434 2.71 2.7

50 1.0848 1o 12 116 1.5864 1.58 1.56

100 0.6597 0.74 0.68 1.0939 1214 1.10
The retarded internal circulation favour wake separation angle for solid sphere were compared with
formation and development. The curve in Figure 3 the known experimental results and correlation.
shows that when the viscosity ratio tends to Foremost, Figure 4 is used to define some standard
infinity, the critical Reynolds number tends to 20, notations as are used to describe wake. This Figure
which 1s m agreement with the critical Reynolds shows a simulated flow field around a solid sphere for
number of 20 for wake formation behind a solid a Reynolds number of 50. The point P1 and P2 in the
sphere as determined through the extrapolation of Figure represent the front and the rear stagnation
the wake length to zero by Kalra and Uhlherr Kalra points on the droplet interface. The point 4 depicts the
(1973), and by the numerical simulations of solid point at which the flow is separated from the droplet
sphere by Pruppacher et al. (1970) and by Lin and interface. This point occurs when the wall shear stress
Lee (1973). Further simulation results show that vanishes. The wake length is the distance between the
the density ratio plays no significant role on the points P2 and P3. The point P3 is a free stagnation
wake formation. For example, wake is formed point whose position is determined by the length of
behind a droplet with fluid properties p* = 1 and the wake. The angle of separation 0/1 is defined as

n* = 50 and another droplet with fluid properties
p* = 1000 and n* = 50 at the same Reynolds
number Re, =28.5. But ‘the critical Reynolds

the angle between the lines MA and MP2, where
point M is the centre of the droplet.

number for a droplet with p* = 1 and n* =5 is 56. The normalized wake length of a water droplet in air
A correlation to predict the dependence of wake is presented in Figure S as a function of Reynolds
formation on the viscosity ratio is given number. The continuous curve is the results of the
below: present computation and the square points are the

results of Brander and Brauer (1993). A close
Re_, =52.1 exp((q e ],30)_05 = 31_6) 14 agreement can be seen between the present results and

that of Brander and Brauer. The curves show that the
This correlation is in close agreement with the wake length increases with the Reynolds number.
results of the simulations when the density ratio is Brander and Brauer argued that the dynamics of a
equals to unity water droplet in air is similar to that of a sohd sphere

because of the wake formation behind the droplet
From Figure 5 a comparison between the wake length
for sotid sphere and water droplet can be made. It can

To establish the validity of the present results, the
simulated results for the wake length and

r
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be seen that the wake length for a solid sphere 1s
longer for any Reynolds number than that of water
droplet. The reason is attributed to the internal
circulation 1n the droplet, which causes delay in the
wake formation as against a case of no internal
circulation in solid sphere. The normalized wake
length for solid sphere 1s correlated as (Brauer.
1979):

l,/d, =0.881n(Re, +22)-3.29. 15

The parameter /, in the above expression represent
the wake length and o, the droplet diameter. The
width of a wake 1s measured through the wake
angle of separation. The results presented in Figare
6 show that the wake width increases with the
Reynolds number. The angle of separation for a
solid sphere was correlated as (Brauer, 1979):

0, = 44(In Re, - 3)"*. (16)

This correlation agrees very well with the results of
this present simulation.

The effect of viscosity ratio on the wake length and
separation angle 1s gauged by plotting the wake
length and the angle of separation over the
viscosity ratio as a function of Reynolds number in
Figures 7 and 8 respectively. These results are only
vahid for a droplet-continuous-phase system with
the density ratio of unity. It can be seen that both
the wake length and the angle of separation
increase sharply with an increase in the viscosity
ratio up to 15. There is no appreciable changes in
the wake length and the angle of separation when
the viscosity ratio is greater or equals to 20.

CONCLUSIONS

The flow characteristics of rising or falling
droplets had been simulated using finite element
method. From the results of the simulation. it can be
concluded that the ratio of the identical fluid
properties between the dispersed and the continuous
phase 1s the major factor that determine the
behavioural pattern of the sedimenting droplets.
Viscosity ratio has effect on the drag coefficient. The
viscosity ratio was found to play a significant role
both on wake development as measured by the wake
length and angle of separation. The density ratio has
no significant role on the wake formation. The wake
length and the angle of separation for droplets are
however smaller than that of a solid sphere for all
Reynolds number. This effect is attributed to the
internal circulation in droplets, which delay the wake
formation behind the droplets. The results of the
present simulation can be used as a guide for selection
of an operation velocity of any droplet-continuous
phase system so as to avoid wake formation that may
be detrimental to heat and mass transfer processes.
The running cost of engineering equipment in which
droplets occur, can thus be greatly reduced.
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Table'3: Variation of Drag Coefficient C;, of Liquid Droplet with Viscosity Ratio n* for
Various Value of Reynolds Number Re.

Drag Coefticient, Cy,

ok = 0110 ¥ =5 n* =10 =20
10 2.609380 4.02637 4.178440 4.265700
20 1.515380 2.51255 2.618460 2.678740
50 0.732412 1.42624 1.501270 1.542850
100 0.411400 0.957843 1,023390 1.058480
150 (0.289611 0.762524 0.826217 0.859554
200 0.224452 0.647546 0.711227 0.754203
250 0.183644 0.568726 0.632698 0.664396
300 0.155608 0.509915 0.574232 0.605377
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Figure 7: Dependence of the normalized wake length on the viscosity ratio for density ratio p’ = 1.
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