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ABSTRACT 

The transverse motion of a fluid-conveying pipe with an inviscid flow was considered in this work. A 
comprehensive governing differential equation for the transverse vibration of a fluid-conveying pipe 
system was derived according to the principles of conservation of mass and momentum of fluid in a pipe. 
The derived equation was then analyzed and solved for an inviscid flow using the integral Fourier-
Laplace Transformations. Effect of some flow parameters like mass ratios, damping coefficient and 
velocity of flow were investigated. Results revealed that the first natural frequency increased with increase 
in mass ratio for low velocities and reverse was the case for relatively high velocities. First natural 
frequency also increased with damping coefficients. Similar profiles can be observed about the second 
natural frequency. The response increased with increase in velocity. The study concluded that damping 
coefficient and mass ratio played significant roles in the motion of a fluid-conveying pipe with an inviscid 
flow. 
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INTRODUCTION 
Several reports have been made by authors in the area 
of dynamics and stability of pipes conveying fluid, 
among which is Païdoussis and his team (Abid Al-
Sahib et al., 2010). According to Abid Al-Sahib et al. 
(2010), internal fluid speed of pipes have often been 
neglected because of perceived small magnitude but 
Païdoussis (2004) in his work revealed the possibility 
of large riser deflections due to such small fluid 
speed. 

The theory of linear mechanics of pipes conveying 
fluids is essentially based on the interaction of inertia, 
elastic, centrifugal, and Coriolis forces. Both 
centrifugal and Coriolis forces arise from the fluid 
flow, while the inertia force is a combination of the 
fluid and pipe inertias. The analysis of the linear 
mechanics constitutes the solution of the pipe 
boundary value problem for the natural frequencies 
and the onset of instability. The instability of a pipe 
conveying fluid is mainly due to a decrease in the 
effective pipe stiffness with the flow speed. At a 

critical flow speed the stiffness vanishes (Ibrahim, 
2010). 

Païdoussis (1998) in his work reported that a 
tensioned pipe conveying fluid and having 
symmetrical boundary conditions behaves like a 
conservative gyroscopic system having a total energy 
varying periodically in time. Small velocities of 
conveyance in such pipes do not cause instability but 
this continues until a particular velocity known as the 
critical velocity where the system loses instability. 
The dynamics of systems with mixed support 
conditions are said to be more complicated and result 
in contradictions (Païdoussis, 1998). Most literatures 
made use of the Euler-Bernoullis equation for fluid-
pipe structure which does not consider the stress 
tensor of the conveyed fluid.  

Equation of motion of a fluid-pipe interactive system 
under the influence of a magnetic field is derived in 
this work using the conservation principles of fluid 
along with the Newtonian method of force 
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interactions with consideration given to the stress 
tensor of the conveyed fluid.  

Underlying assumptions are: 

(i) pipe’s cross-section is small relative to the length   

(ii) the flow is a fully developed incompressible 

viscous fluid 

(iii) the dynamic system is under the influence of 

both internal and external loads 

 

PROBLEM FORMULATION 

 

 

 

 

 

 

 

Fig. 1: A Model of the Fluid-Pipe System 

 

Derivation of Governing Differential Equation 

Force per unit volume in the fluid is given by 
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is a material derivative operator.

sF is the surface force which is the sum of the pressure gradient, ,p the viscosity, .  representing the 

divergence of a stress tensor and bF which is the sum of the body forces stemming from the action at a distance, 

such as gravitational and electromagnetic forces acting on the system (Anderson, 2003; Montreal, 2016).  

Eqs. (1) and (2) can be written for a Newtonian fluid under magnetic field as 
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where,  is viscosity of the fluid, o is permeability, M is magnetization, H is magnetic field and sv is specific 

volume. 

Considering the assumptions of incompressible fluid, and taking symmetry into consideration Eq. (1) becomes 
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Then, Eq. (4) can be rewritten as 
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As a result of deflection, with  being the angle between the pipe position and the x-axis, 
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where T is the axial pre-tension in pipe (probably as a result of welding), Q is the shear force, c is the coefficient of 

structural damping of the pipe.

 

 txw ,  and  txu ,  are transverse and lateral displacement of the system. 

          

Due to the deflection of the pipe and the fact that a fluid will assume the shape of its containing vessel, Eq. (7) 
becomes 
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Eq. (10) is a modified type of Navier-Stokes equation for fluid deformation in a pipe. 

But, 
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Eqs. (8) and (9) can be combined together for the transverse motion of the fluid-pipe system as 
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The moment of the pipe-fluid system is given by 
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Substituting Eqs. (18) and (19) into (11) gives  
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Eq. (20) can also be written as
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Eq. 21 is the transverse equation for the motion of a fluid-conveying pipe. 

2.2 Analysis of the Governing Differential Equation
 
 

 For an inviscid flow where there is no body force Eq. (21) reduces to  
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This can be seen to be the same with the well known Euler-Bernoullis Equation for motion of a fluid-pipe structure.  

2.3 Method of Solution 

Linearizing and non-dimensionalizing Eq. (22) for a pipe with damping and under harmonic motion leads to 
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Applying Fourier complex integral transforms according to Wrede and Spiegel (2002), Jeffrey (2002), Olayiwola 
(2016) and Olunloyo et al. (2017) namely: 
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Eq. (23) becomes 
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where, for a cantilever pipe,  
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Applying Laplace Transform to Eq. (26) gives 
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where, 
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2.4 Analysis of the natural frequency 

The natural frequencies of the system can be obtained from Eq. (28), viz 
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                    (31) 

Eq. (30) can be rewritten with Eq. (31) as 

02
1

2
 nn i       (32) 

2.5 Analysis of the Dynamic Response 

The response of the system is given by applying Fourier-Laplace Inversion to Eq.(28) leading to 
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3.0 RESULTS AND DISCUSSION OF RESULTS 

3.1 Results 

 

Figure 2: Natural frequency (ω1) profile as a function of L for the case   

δ = 0.2, L = 10 m, n = 1 

 

Figure 3: Natural frequency (ω1) profile as a function of delta for the case   

L = 10 m, n = 1 

 

Figure 4: Natural frequency (ω1) profile as a function of damping coefficient for the case   

δ = 0.2, L = 10 m, n = 1 
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Figure 5: Natural frequency (ω2) profile as a function of n for the case   

δ = 0.2, L = 10 m 

 

Figure 6: Natural frequency (ω2) profile as a function of delta for the case   

n=1, L = 10 m 

 

Figure 7: Natural frequency (ω2) profile as a function of damping coefficient for the case   

δ = 0.2, L = 10 m, n=1 
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Figure 8: Transverse displacement (w) profile as a function of U for the case   

δ = 0.2, L = 10 m, n=1 

 

Discussion of Results 

The transverse vibration of a cantilever fluid-

conveying pipe with inviscid flow has been 

investigated in this work. 

A steel pipe of length 10 m with diameter 1 m, 

thickness 10 mm, density 7850 kg/m3 conveying a 

fluid of density 977 kg/m3 was used for the 

computations.  

The linearized version of this problem revealed there 

are two basic frequencies for any solution, this is in 

agreement with Olunloyo et al. (2007). The study 

shows that the behaviours of the natural frequencies, 

ω1 and ω2, reproduce the pattern of Thurman and 

Mote (1969) and Olunloyo et al. (2007). Furthermore 

the natural frequencies of the system are influenced 

by factors like the velocity of flow. Fig.1 shows the 

pipe-fluid system while Figures 2-8 show the effects 

of varying important flow parameters like the fluid 

mass ratios, the damping coefficients, the modes etc 

on the performance of the fluid-pipe structure. 

The first natural frequency is plotted against the 

dimensionless fluid flow in Figures 2-4. Modes can 

be seen to influence the natural frequency in Fig.2, as 

an increase in mode leads to an increase in the natural 

frequency. In Fig.3, two regions are observed, 

initially, the same value of  natural frequency is noted 

for the mass ratios considered which later increased 

with increase in velocity and mass ratios until a 

particular value of the dimensionless velocity is 

reached and then a reverse is observed.  

Figure 4 is the plot of the first natural frequency 

against dimensionless flow velocity as a function of 

damping coefficients. It is seen that increase in 

damping coefficient is associated with increase in the 

natural frequency, but natural frequency is generally 

observed to increase with dimensionless flow 

velocity until the value of 0.6 and then decreased. 

Figs.5-7 present the graphs of the complimentary 

frequency against the dimensionless flow velocity for 

the system under consideration. Fig.5 has a similar 

profile with Fig.2 where natural frequency increases 

with increase in mode. Unlike in Fig.3 where two 

regions are observed for mass ratios, only one can be 

seen in Fig.6, here, natural frequency decreases with 

mass ratios. In Fig.7, whereas, the natural frequency 

generally increases with damping coefficient, it also 

decreases with increase in fluid velocity. 
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The response of the system is shown in Fig.8 which 

increases negatively with increase in velocity.  

 

CONCLUSIONS 

The motion of a fluid-conveying pipe with an 

inviscid flow was investigated in this work. A 

compressive equation for the transverse vibration of a 

pipeline conveying fluid was derived using the 

conservation principles of continuity and momentum. 

The equation was analysed and solved for an inviscid 

flow with the aids of Fourier-Laplace 

Transformations and important parameters like mass 

ratio, damping coefficient and velocity were shown 

to influence the performance of the system. This 

study concluded that damping coefficient and mass 

ratio played important roles in the motion of the 

system. 
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