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ABSTRACT 

Fluid conveyance pipes are subject to vibration and the attendant dynamic stresses lead to instability and 
sometimes failure. The fluid inside the pipe dynamically interacts with the motion of the pipe, therefore, the 
material properties of the fluid are expected to play important roles on it. This paper analyzed the deformation of 
a pipe resting on Winkler foundation and conveying a non-Newtonian fluid. Euler-Bernoullis beam and plug 
flow models are employed in this work. The resulting transverse differential equation was non-dimensionalized, 
discretized and solved by means of the finite element method. Effects of the fluid materials and other flow 
conditions were computed and their implications on the pipe integrity analyzed. Natural frequency increased with 
flow index, Winkler foundation and mass ratios. Critical velocity also increased with Winkler foundation. 
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INTRODUCTION 
Pipes are widely used in many industrial fields. The 
fluid flow and pipes are interactive systems, and their 
interaction is dynamic. These systems are coupled by 
the force exerted on the pipe by the fluid (Abid Al-
Sahib et al., 2010). Flow-induced vibration analysis 
of pipes conveying fluid has been one of the 
attractive subjects in structural dynamics (Liu and 
Xuan, 2010). The free vibrations of pipes conveying 
fluid was studied by Huang (1974) and reported in 
Abid Al-Sahib et al. (2010), taking into account, the 
effects of rotary inertia on both the fluids and the 
pipes, the shear deformation of the pipes and the 
lateral inertia force due to the moving fluids. 
Naguleswaran (2002a, 2002b and 2004) obtained an 
approximate solution to the transverse vibration of 
the uniform Euler-Bernoulli beam under linearly 
varying axial force. The author also extended this 
approach to find the natural frequencies, sensitivity 
and mode shapes of Euler- Bernoulli beam with up to 
three step changes in cross-section. Dian et al. (1998) 
analyzed the free lateral vibration of thin annular 
with variable thickness and circular plates. The study 
adopted the finite element method to obtain the 

natural frequencies and mode shapes of the 
axisymmetric and non axisymmetric thin annular. 
The results showed that the finite element method 
was an efficient and convenient tool for analyzing the 
lateral vibration of annular and circular composite 
plates with variable thickness. The effect of induced 
vibration of a simply supported pipe conveying fluid 
with a restriction was investigated theoretically and 
experimentally by Alaa (2001), transfer matrix 
approach was implemented to describe the dynamic 
response of a pipe conveying fluid and a numerical 
technique for solving two dimensional 
incompressible steady viscous flow for the range of 
Reynolds number(5<Re<1000). He concluded that 
the fluid flow through a pipe with restriction affected 
the dynamic behavior of the pipe in addition to the 
flow field structure due to induced vibration. 
Olunloyo et al. (2007) studied the dynamics of 
offshore fluid conveying pipe and pipe walking 
phenomenon alongside the effect of elevated 
temperature and concluded that the role of the 
transient solution may not be as central for pipe 
walking as was hitherto believed as there are other 
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significant contributions emanating from some of the 
other parameters. 
Shen et al. (2009) based on Timoshenko beam model 
studied the band gap properties of the flexural 
vibration for periodic pipe system conveying fluid 
using the transfer matrix method. These methods 
have proved to be effective in analyzing flow-
induced vibration of certain pipes. It is well known 
that analysis of pipe dynamics could be conducted 
based on the energy-based approach according to 
Hamiltonian principle (Stangl et al., 2005; Stangl and 
Irschik, 2006). Xu et al. (2010) proposed the 
analytical expression of natural frequencies of fluid-
conveying pipes with the help of homotopy 
perturbation method. Those calculated frequencies 
were in good agreement with experimental results. 
Reddy and Wang (2004) derived equations of motion 
governing the deformation of fluid-conveying beams 
using the kinematic assumptions of both Euler- 
Bernoulli and Timoshenko beam theories. The 
formulation accounted for geometric nonlinearity in 
the Von Karman sense and contributions of fluid 
velocity to the kinetic energy as well as to the body 
forces. Finite element models of the resulting non-
linear equations of motion were also presented. 
Kuiper and Metrikine (2004) proved analytically the 
stability of a clamped-pinned pipe conveying fluid at 
a low speed. A tensioned Euler-Bernoulli beam in 
combination with a plug flow was used as a model. 
The stability was studied employing a D-
decomposition method.  
The three-dimensional nonlinear differential 
equations of a fluid-conveying pipe undergoing 
overall motions were derived by Meng et al. (2011) 
based on Kane’s equation and the Ritz method taking 
into consideration the effect of the internal and 
external fluids. They obtained the time histories for 
the displacements using the incremental harmonic 
balance method.  
The Finite Element Method (FEM) according to 

Gunakala et al. (2004) is one of the most powerful 

tools used in structural analysis. Finite Element 

Analysis is based on the premise that an approximate 

solution to any complex engineering problem can be 

reached by subdividing a larger complex structure 

into smaller non-overlapping components of simple 

geometry called finite elements or elements 

.Complex partial differential equations that describe 

these structures can be reduced to a set of linear 

equations that can easily be solved using this method. 

Abraham (2001) studied the vibration and stability of 
straight pipe systems conveying fluid, either steady 
or fluctuating flow. He considered supports of 
different  type and positions and concluded that the 
support position and values had a significance on 
dynamic characteristics of the pipe. For pipes of a 
finite length, the dynamical behaviour depends 
strongly on the type of boundary conditions at both 
ends (Lee and Mote, 1997; Kuiper and Metrikine, 
2004). They agreed that distinction should be made 
between the type of supports (fixed, simple, free, 
inertial, etc.) and their location (upstream or 
downstream). It is known that a tensioned pipe 
conveying fluid and having symmetrical boundary 
conditions (clamped-clamped, pinned-pinned, etc.) 
behaves as a conservative gyroscopic system 
(Païdoussis, 1998; Kuiper and Metrikine, 2004), 
implying that the total energy of the system varies 
periodically with time. Païdoussis (2004) studied 
numerically pinned-clamped and clamped-pinned 
pipes conveying fluid. He found that to predict the 
dynamical behaviour of the clamped-pinned pipe, 
even 8 significant-figure accuracy was not good 
enough.  
In practice, long, cross-country pipelines rest on an 
elastic medium such as a soil, and hence, a model of 
the soil medium must be included in the analysis. The 
Winkler model, in which soil is represented by a 
series of constant stiffness, closely spaced linear 
springs, is a very popular model of the soil employed 
in many studies, perhaps because it is a simple linear 
model. Many researchers, Stein & Tobriner, (1970); 
Lottati and Kornecki, (1986); Dermendjian-Ivanova, 
(1992) and Chary et al., (1993) studied fluid-
conveying pipes resting on elastic foundation. Becker 
et al. (1978) as reported in Ibrahim (2011) found that 
the critical flow velocity of a pipe on a Winkler 
foundation is higher than the critical flow velocity of 
the same pipe without a foundation.  Doaré et al. 
(2002) also studied instability of fluid conveying 
pipes on Winkler type foundation.  
High molecular weight liquids are usually non-
Newtonian (Subramanian & Shankar, 2003).  When 
the viscosity decreases with increasing shear rate, the 
fluid is shear-thinning. However,  many shear-
thinning fluids exhibit Newtonian behaviour at either 
extremely low or high shear rates (Herh et al., 2003). 
Thus, the Navier-Stokes equations of incompressible 
viscous non-Newtonian fluid, Maxwell's equations of  
electrodynamics and the energy equation are the 
basic equations of motion for incompressible, viscous 
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conducting non-Newtonian power-law fluids 
(Subramanian & Shankar, 2003). 
 
GOVERNING DIFFERENTIAL EQUATION 
Figure 1 shows the schematic diagram of the system 
with its axis corresponding with the longitudinal 
direction. The pipe idealized as an elastic beam is 
clamped at both ends and having dimensions given 
by the length L, the inner radius r. The pipe is 
assumed to be sufficiently slender that it can be 
modeled as the Euler-Bernoulli beam. The fluid 
being conveyed is assumed to be an incompressible 
non-Newtonian fluid and plug flow is also assumed. 
 
 
 
 
 
 
 
 
 
Figure1. Schematic diagram of a straight fluid-
conveying pipe with both ends fixed 
 
According to Bird et al. (2007) on Power law, shear 
stress on a fluid flowing in a pipe is given by 


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



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 


dr

dv
m x

rx

   (1) 

where,  

m = non-Newtonian viscosity 

vx = velocity of flow in x-direction 

r = internal radius of the pipe 

υ = fluid flow index 

But for a horizontal flow under the influence of 

pressure gradient, 

r
L
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
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where, 

Po = pressure at entry 

PL = pressure at exit 

L = length of pipe 

Substituting Eq.(2) into Eq.(1) gives 
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Integrating Eq. (3) gives 
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Substituting Eq.(5) into Eq.(4) gives 
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The maximum velocity ,maxv is the velocity at the centre of the pipe (r = 0) 
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Eq.(8) makes it possible for Eq.(6) to be written as 
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Substituting Eq. (9) in Euler-Bernoulli’s Equation for fluid-pipe structure gives 
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when the structure is lying on Winkler foundation, Eq. (10) becomes 
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where,  
EI= flexural stiffness,  

pf mmM   = mass of the pipe and the fluid flowing in it 

K = soil stiffness 
 
The associated boundary conditions are given by 
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Eq. (11) is non-dimensionalized to give 
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3.FINITE ELEMENT ANALYSIS (DISCRETIZATION OF THE GOVERNING DIFFERENTIAL 
EQUATION)  
The first step in the finite element analysis is the discretization of the domain. Here, the domain of the problem is 
divided into a finite set of line elements and each element having at least two end nodes. 
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where, 

 e
j

su  is the value of ),( txu at time stt   and node j of the element e .  

Substituting  xw i into Eq. (13) leads to  
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where M is the mass matrix, C is the matrix relating to the gyroscopic force, 
1K  is the structural stiffness matrix, 

2K is the matrix related to centrifugal force in the fluid and 
3K is the matrix related to the Winkler foundation. 

 
 In vector-matrix form, Eq. (16) becomes 

          FuKuCuM          (17) 

 
4. ANALYSIS OF THE NATURAL FREQUENCIES 
When the pipe is in steady state, Eq. (17) can be written as 
 

         0 uKuCuM           (18) 

Let       tTxUtxu ,          (19) 

Substituting Eq.(19) into Eq.(18) gives 
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The natural frequencies of the system can be obtained from Eq. (20) by transforming it into 
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and OI , are identity and zero matrices respectively 

If the solution of Eq. (19) is assumed to be 

  ,t
o

neYtY  the complex eigenvalue n  can be computed from 

  0det  AB n           (21) 

And the natural frequencies can now be obtained from the eigenvalues 
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RESULTS 
 

 
Figure 2: Natural frequency ω1 profile as a function of flow index for the case 

4.0,0,5  mL  

 

 
Figure 3: Natural frequency ω1 profile as a function of flow index for the case 

4.0,2,5  mL  
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Figure 4: Natural frequency ω1 profile as a function of mass ratio for the case 

1,0,5  mL  

 

 
Figure 5: Natural frequency ω1 profile as a function of mass ratio for the case 

1,2,5  mL  

 

 
Figure 6: Natural frequency ω1 profile as a function of foundation stiffness for the case 

1,4.0,5  mL  
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Figure 7: Natural frequency ω2 profile as a function of flow index for the case 

4.0,0,5  mL  

 

 
Figure 8: Natural frequency ω1 profile as a function of flow index for the case 

4.0,2,5  mL  
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Figure 9: Natural frequency ω2 profile as a function of mass ratio for the case 

1,0,5  mL  

 

 
Figure 10: Natural frequency ω2 profile as a function of mass ratio for the case 

1,2,5  mL  

 

 
Figure 11: Natural frequency ω2 profile as a function of foundation stiffness for the case 
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1,4.0,5  mL  

 
DISCUSSION OF RESULTS 
This paper analyzed a pipe resting on Winkler 
foundation and conveying a non-Newtonian fluid. 
The pipe was idealized as an elastic beam clamped on 
both ends and resting on Winkler foundation through 
which a non-Newtonian fluid was flowing. A model 
was obtained for the fluid-pipe-foundation system.  
Simulations of a particular pipeline design was 
carried out based on characteristic values of some of 
the fluid and mechanical parameters that govern the 
interaction. The following physical parameters were 
considered in this work:  

3,2,1,0,210,24,26,,/1000,/7800 33   GPaEmmRmmRmmkgmkg iofp

 
In this study, the first two natural frequencies were 
considered and generally, the two natural frequencies 
decrease with velocity of conveyance. This agrees 
with Ozhan and Pakdermirli (2013), Kuye (2013) and 
Doaré et al. (2002). The bigger the natural frequency 
of a system the better it will be able to withstand 
impressed vibration without failure. 
Figure 2 - 11 display the behavior of the first natural 

frequency 1  with velocity for different flow 

parameters. In Figure 2, natural frequency 1  

increases with flow index  for the case of 0 . 

This indicates that if the flow index range is pseudo-
plastic (pp)<Newtonian (N)<dilatant (d) and the 
index for Newtonian is taken to be 1, then

 dNpp N 1)(1)(1 )(   . The critical velocity, crtv , 

is the velocity at which the natural frequency drops to 

its lowest. In this situation, crtv occurs at v = 2m/s. 

The highest 1 recorded is 10. 

Figure 3 displays a similar pattern with that of Figure 
1 for varying mass ratio, the behavior of the natural 

frequency 1  increases with mass ratio   for 0
. 
Figures 4 and 5 have similar patterns with Figures 1 

and 2. Natural frequency 1  increases with both the 

flow index  and the mass ratio  for 2 . 

In Figure 6, natural frequency 1  and crtv increase 

with . This agrees with Doaré et al. (2002), Ozhan 

and Pakdemirli, (2013), Becker et al. (1978) and 
Ibrahim (2011). Figures 7 – 11 replicate similar 

patterns with Figures 2 – 6 for both 0 and 

2 for the second natural frequencies 2  but 

with higher values compared with 1 . 

 
CONCLUSION 
This paper analyzed a pipe resting on Winkler 
foundation and conveying a non-Newtonian fluid. It 
can be concluded that natural frequency increased 
with flow index, Winkler foundation and mass ratios. 
Critical velocity also increased with Winkler 
foundation. Any pipe conveying a fluid should be 
made to rest on a foundation for good performance. 
The same velocity must not be used to convey all 
fluids, the flow indices must be considered to 
safeguard resonance that can lead to failure of the 
pipe. 
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