LAUTECH JOURNAL OF ENGINEERING AND TECHNOLOGY 4(1) 2007: 16 ~ 20

GENETIC ALGORITHM APPROACH TO SYNTHESIS OF 2, 2 FULL ADDER
LOGIC NETWORK.

I.A. Mowete", F. A. Semire® and A. A. Yusuff®

"Department of Electrical and Electronics Engineering University of Lagos, Akoka, Lagos State, Nigeria.
"Department of Electronics and Electrical Engineering, Ladoke Akintola University of Technology,
Ogbomoso, Oye State, Nigeria.

* Corresponding Author

Abstract

The problem of synthesizing a minimum cost logic circuit is formulated via a genetic algorithm (GA). The
synthesis proposes a scheme that "evolves" the minimized logic solution of a defined input function. Method
employed combines the available logic gates in several of ways until a minimized and best result is achieved. The
result obtained showed a considerable improvement over the existing methods.

Key words: genetic algorithm, logic synthesis, full adder network and sum of products form.

Introduction

In recent times, research has demonstrated the
cfficacy of employing genetic algorithm in system
design: tasks previously thought impossible are being
achicved with a little research and innovation. The
advent of these technologies (genetically modeled
circuits) has developed the ways to approach the
research and development of both software and
hardware through logic minimization theories
(Chattopadhyay et al., 1996; Quine, 1952; McCluskey,
1965). The first published work on the application of a
genetic algorithm was on a playing-game technique
modeled after natural selection (Bayley, 1967). These
findings later propelled a wide area of research in
different ficlds; one among such is Sanghamnitra
where he applied a genetic-like algorithm to the design
ot a set of detections for a pattern recognition and
classification machines (Sanghamnitra et al, 1998;
Sanghamnitra and Sankar, 2005). The concept of using
genetic algorithm to evolve digital circuit designs was
discussed in (Higuchi et al., 1993). Efforts were
broadly divided into functional - level evolution and
gate-level evolution. Louis and Gregory (1991) made
use of genetic algorithms on design structures
attempting to solve the combinational circuit design
problem. His use of masked crossover genetic operator
proved to be very advantageous, but the GA itself
became more of a powerful search technique. Alan et
al. (1999) extended the research done by Louis, and
used GA to automate the design of combinational logic
circuits. They designed logic circuits with matrices,
with each element representing a gate and the inputs
from previous clements. The gate was selected from a
list of five fundamental gates. AND, NOT, XOR, OR
and WIRE where the last representing a physical wire

(i.e. absence of a gate). Thus, logic minimization was
solved by a constraint on the matrix elements:
Maximizing the wire element and hence minimizing
the total number of gates necessary for the
implementation of the circuit. Koza (1992) used
genetic programming in the design of combinational
circuit, however, from a different perspective. His
objective was set on the successful generation of the
circuits and not their minimization. The design of a
hardware-based cost function that would accelerate the
GA by several thousand times was described by
Shackleford et al. (1997). An odd parity circuit
required 24 basic cells (BCs) versus 28 BCs and a
magnitude comparator require 20BCs versus 21 BCs
produced by the commercial system was formulated
for a genetic algorithm.

This research describes an approach in
solving the problem of minimal cost logic circuit
synthesis using genetic algorithms. The approach
proposes a scheme that involves the introduction of an
innovative logic minimization that employs the use of
natural selection to map a design to a logic system
while minimizing the resources utilized. This scheme
is referred to as Genetic algorithm Synthesis. GAs, as
the name precludes, is a synthesis scheme base on a
standard genetic algorithm.

Genetic Algorithm Overview

Genetic Algorithms (Holland, 1975) are
“search procedure” based on the mechanics of natural
selection and nature genetics. The algorithm operates
on a set of offered solutions called “populations”. Each
solution calied “individual” can be any solution in the
solution space represented by a string called
“chromosome”. Different solutions will be coded into

I.A. Mowete, F. A. Semire and A. A. Yusuff /LAUTECH Journal of Engineering and Technology 4(1) 2007: 16 -20

different chromosomes values .the solution space is
searched in order to find the optimum for a “target
function”. The resulting value is referred as the “fitness
value” of the solution, the current population is
evolved creating a new generation with higher fitness.
The evaluation is done using three operators.

Reproduction: this operator selects one
individual from the current generation to the next
generation. The probability of an individual to be
selected is proportional to its fitness value i.e. the
survival of the fittest solutions.

Crossover: two individuals are mated in order
to exchange genetic information. The chromosomes,
which represent the two solutions, are broken at same
random space and combined together creating two new
individual. With a randomly chosen crossover position
2, the two strings 01101 and 11000 yield the offspring
01000 and 11101 as a result of crossover.

Mutation: mutation is a random change in the
chromosome. One bit in the chromosome string is
toggled. The original and mutate individual represent
different solutions. Thus, a string 100101 may, as a
consequence of random mutation gets changed to
110101. The mutations operator gives the GA an
opportunity to search in new corners of the solution
space.

Methodology

In this section we present our application of
genetic algorithms to the design of logic circuit. We
will show our results on a 2,2 full adder logic network
design. Each individual in the population represents a
candidate solution to the logic design problem. The
procedures involved are sectioned in to different
modules as shown in Fig. 1 and they are as follow:
Random Number Generator: This module provides
the input instantiation, selection, and crossover and
mutation modules with pseudo - random numbers.
Input Instantiation: This module provides the input of
each truth table combination, stored in external
memory and its output is fed into the fitness module
for comparison to the experimental output.
Selection: This module receives member and a random
number as inputs. It employs roulette wheel and

17

tournament type of selection to decide whether the
number can be selected for the next generation.

Crossover/Mutation: These modules accept
members as input, and use the input pseudo-random
numbers to decide whether crossover/mutation are to
be performed upon the individual or not. Simple point
crossover and single - bit mutation are typically used.
Fitness: The module is where fitness value of each
individual is evaluated. It accepts the output from the
input instantiation module compares it to the
experimental output and calculates the fitness of that
individual. It stores the new individuals in memory and
passes them on to the selection module.

Random number Selection Genetic
generator i
section Mode!
Mutation

Fitness Section

T Model

Figure 1: Overall block diagram

Input instantiation
section

Experiments and Results

We implemented our methodology using the
Jbuilder operating environment. Although it takes very
much time to evaluate fitness values for each binary
string, it was easy to implement such in JAVA

An experiment was performed on 2, 2 full
adder logic function. The implementation technology
was a library composed of OR, AND and XOR gates
with the gate cost and size of the circuit measured in
relation to number of logic gates and input pins.
For the logic function (2, 2, full adder) a genetically
based algorithm was used to synthesis a 2, 2, full adder
truth table shown in Table 1.

Evaluation

LA. Mowete, F. A. Semire and A. A. Yusuff /LAUTECH Journal of Engineering and Technology 4(1) 2007: 16 -20

Table 1: Adder two - 2 bit truth table

Kn Input Desired Qutput

a b C D X y z

0 0 0 0 0 0 0 0

0 0. 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 I

0 1 0 0 0 0 0 1

0 1 0 1 0 0 1 0

0 1 1 0 0 0 1 1

0 1 1 1 0] 0 0

1 0 0 0 0 0 1 0

| 0 0 1 0 0 1 1

1 0 1 0 0 1 0 0

1 0 1 1 0 1 0 1

1 1 0 0 0 0 1 1

1 1 0 1 0 1 0 0

1 1 1 0 0 1 0 1

1 | 1 1 0 1 1 0
We ran our genetic algorithms code for 15 generations and *Fitness evaluation: linear at 1.00
we decided to move on the two best binary ~ strings from our *Probability of crossover:0.6
cvaluation to the next generation. Best fitness values from *Probability of mutation: 0.001
our generations are shown in Table 2. *Type of mutation: single bit
The parameters for the genetic algorithms for our task are: *Type of crossover: single point
*Population size: 100 *Time of operation: 1.0 sec
*Number of generation: 15
Table 2: Table of result generated
bit | (2) bit 2(y)
logic gate combination fitness value logic gate combination Fitness value
c 0.995 (((a™a))M(c&a)) 0.9965
((d&b)*c) 0.997 b&d 0.997
((d&Db)\b) 0.996 (a\c) 0.995
((b™((c\d) 0.994 b\(~a) 0.995
d*b 1.00 d 0.993
c/(c~) 0.995 a&b 0.994
b 0.995 (((a~))/c~a) 0.995
a- 0.994 ((d&b)"b) 1.00
(a&a)/b 0.995 (b"a) 0.995
(a&a)7(a&ka)/b 0.995 (c/(c~)) 0.994
Bit 3 (x)
((a"a)&((a"b)a 0.995
(a&((a"c)&(c/C))) 0.996
((d~)&a) 0.994
((d/(d~)) 0.995
d 0.996
a 0.995
((b&c)ard))c 1.00
(c&d) 0.995

18

i.4. Mowete, F. A. Semire and A. A. Yusuff /LAUTECH Journal of Engineering and Technology 4(1) 2007: 16 =20

b
- bit (o) 1
a

b —

Fig. 2: Circuit for Output of bit 0

|

bit 1

o o

Fig..3: Circuit for Output of bit 1 of the Adder

o

—D_;D—r

Iig 4: Circuit for output of bit 2 of the Adder

a b ¢
\2‘—\) bit 1
[

o oo o

S0 -

Fig 5: Synthesis Results for 2.2 Adder Circuit

1.A. Mowete, F. A. Semire and A. A. Yusuff /LAUTECH Journal of Engineering and Technology 4(1) 2007: 16 20

‘Table 3: Experimental results

Circuit synthesis problem Blocks Input pins Time (sec) Generations
Fuil adder Proposed method 6 1.0 5
Existing method 7 2.0 20

As the results in Fig 1-4 show that a more compact
circuits are realized by our GA approach. The
proposed method took 1 second to scan through 15
generations as compared with existing method
{Tatsuya ct al., 1992) which took 2 seconds through 20
generations. The total input pins realized is 13 pins
while that of existing method is 18 pins. The cost of
circuit implementation, which is measured in terms of
input pins, is reduced by a factor of 0.73 as depicted in
Table 3.

Conclusion

The results presented in this paper indicate
that genetic algorithms offer an attractive approach to
Jogic circuit design. The performance is far better than
the existing logic synthesis method in terms of cost
compactability and speed. . Although this result is
encouraging, much progress is needed for large-scale
digital circuits.

References

Alan D., Christiansen Carlos A., Coello Coello and
Arthro Hernandez Aquirre. (1994) "Towards
automated evolutionary design of combinational

circuits".
Bayley J.S (1967) “Genetic algorithm based on playing
game technique modeled after natural

selection,” Bell System Technical Journal, .62
(3), 3220-3225.

Chattopadhyay, S., Roy, S. and Chaudhuri, P. P.
(1996) "Synthesis of highly testable fixed -
polarity AND - XOR Canenical network - A
genetic algorithm - based approach,” IEEE
Transactions on computer. 45 (4), 487-490.

Higuchi T., Niwa T., Tanaka T., Iba H., De Garis H
and Furuya T., (1993) "Evolving hardware with
genetic learning: A first step towards building a
Darwin Machine," Proceedings of the second

20

international Conference on the simulation of
Adaptive Behaviour (SAB 92), MIT press,
1993.

Holland J. H., (1975) "Adaptation in Natural and
Artificial Systems" University of Michigan
Press, 1975. (2" edt: MIT press, 1992).

McCluskey, E. Jr., (1956) “Minimization of Boolean
functions". Bell System Technical Journal, 35
(6), 1417 — 1444,

Quine, W.V. (1952). "A way to Simplify truth
functions" Am. Math. Monthly, 59, 521-531.

Koza J. R., (1992) "Genetic programming on the
programming of computers by means of Natural
Selection", The MIT press, 1992.

Sanghamnitra B., Sankar K. P., and Murthy C.A,
(1998) “Pattern classification using genetic
algorithm”, Pattern Recognition Letters, 19 (13),
1171-1181.

Sanghamnitra B and Sankar K. P., (2005).”Patiern
recognition and machine Intelligence”, First
International conference , PREMI, Kolkata,
India, December 20-22, 2005.

Shackleford, B., Okush, E., Yasuda, M. Koizumi, H.,
SCO, K. and Iwamoto T., (1997) "Hardwarc
framework for accelerating the execution speed
of a genetic algorithm", IEICE Transactions on
Electronics, E80-C (7) ,962-969.

Sushil J. Louis and Gregory J.R., (1991) “Using
genetic algorithms to design structures” Tcch.
Rep. 326, Computer Science Department,
Indiana University, Bloomington, Indiana, USA,
Feb. 1999.

Tatsuya M., Claud M.N.A and Roberto S., (1998)
"Automatic circuit synthesis using Genetic
Algorithm Based on the Coexistence of
Heterogeneous Populations”, Osaka institute of
Technology

