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ABSTRACT 
In many Evolutionary Algorithms (EAs), a crossover with two parents is commonly used to produce 
offsprings. Interestingly, we need not restrict ourselves to two-parent crossover since EA allows us to emulate 
natural evolution in a more flexible fashion. There are experimental results in the literature which show that 
multi-parent crossover operators can achieve better performance than traditional two-parent versions. 
However, most of these experimental results are based on common test functions. Experimental studies 
involving real-life, NP-hard problems such as network design problem are very rare. This paper presents 
Memetic Algorithm with Multi-Parent Crossover (MA-MPC) with a view to providing a case study of multi-
parent crossover within the framework of MA for network topology design problem. Results show that MA-
MPC does not always outperform MA. It depends on the size of the problem and the number parents (be it 3, 
5, 7, or any other) 
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INTRODUCTION 
Memetic Algorithm (MA) isknown to be one of the 
highly effective meta-heuristic approaches for 
solving a large number of constraint satisfaction and 
optimization problems [1]. One of the key features of 
a MA is the crossover operator for generating 
offspring solutions. Generally, meaningful crossover 
operators enhance healthy diversification in the 
population and prevent premature convergence of the 
population.In many Evolutionary Algorithms (EAs), 
a crossover operation with two parents is commonly 
used to produce offsprings. However, we need not 
restrict ourselves to two-parent crossover only as 
EAs allows us to emulate natural evolution in a more 
flexible fashion. Several attempts studying the use of 
more than two parents for crossover in EAs have 
been reported [1, 2, 3,4]. In fact, there are 
experimental results in the literature which show that 
multi-parent crossover operators can achieve better 
performance than their two-parent versions. 
However, most of these experimental results are 
based on common test functions. Experiments 
involving, real-life, NP-hard problems such as 
network design problem are very rare. 
 In this paper, we provide a case study of 
multi-parent crossover operatorwithin memetic 
algorithm for multi-objective network design 
problem. 
 
PROBLEM FORMULATION 
We consider a multi-objective network design 
problem of the form: 
Minimize   � =   �(�) =   ( ��(�), ��(�) (1)   

Subject to:  ������� ≤ �����   (2) 

  �(�) ≥ ��         (3) 
Where: 
� = (��,��,… … … . ,��) ∈ �  is the decision vector 
� =  (��,   ��) ∈ �   is the objective vector 
��(�) is the cost function of the configuration � 
��(�) is the average delay on all the links in the 
configuration � 
�������  refers to the traffic flowing along link  

(�,�) 
����� is the capacity of link (�,�) 

�(�) is the reliability of the configuration � 
�� is the minimum acceptable reliability (��  = 0.95) 
The reliability calculation is done via Monte Carlo 
simulations. 
Other network design parameters used are the 
followings: 
N denotes the total number of nodes in the network 
��� denotes the physical distance between every pair 

of nodes � and � 
��� represents the cost of the link between nodes �and 

� 
��is the cost of network equipment at node � 
���  is selection status of link (�,�) : ��� = 1 if link (�,�) 

is selected, else ���  = 0 

L    = maximum distance for which the signal is 
sustained without amplification (We fix L = 15km) 
A   = cost of each amplifier unit(#6.00) 
Poisson process was used to model the traffic delay 

The objective functions; network cost and 
average delay are approximated by the following 
formulation. 
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i Network Cost: 
������� = �������� + �������� + �������
  (4) 
Where; 
�������� =  ∑ ���    (5) 
�������� =  ∑ ∑ �����    (6) 

������� =  
∑ ∑ �����   � �

�
  (7) 

 
ii Average Delay: 

������� =  
∑ ∑ [���������������� ]�

∑ ∑ ���������
  (8) 

������� =  
�

[�������������]
   (9) 

�������  = 0 if there is no link between nodes � and � 

�������   =    if the network cannot handle the 

traffic load with the existing links’ capacities and 
routing policy. 
The constraints are: 
i. Flow constraints which can be expressed as: 
 �������   ≤ �����     (10) 

 and 
ii. Reliability constraint which can be stated as: 
 R(x)   ≥  ��     (11) 
Monte Carlo Simulation is used to estimate network 
reliability. The network is simulated t times, given 
the design and the links’ reliabilities. The method is 
outlined below. 
 
initialize i = 0, c= 0 
Step C0: while i < t Repeat. 
Step C1: Randomly generate network 
 (a): i = i + 1. 
Step C2: Check to see if the network forms a 
spanning tree 

(a): if YES, increment c by 1 and go to Step 
C0 
 (b): if NO, go to Step C0 
Step C3: R(x) = c / t. 
 
Breadth First Search (BFS) is used for routing. The 
metric used for this purpose is the length of the link. 
The following assumptions were made in the 
problem formulation 
The location of each network node is given 
Each ��� is fixed and known 

Each link is bidirectional i.e. a path can be traversed 
in either direction 
There is no redundant link in the network 
 
ALGORITHMDESIGN AND 
IMPLEMENTATION DETAILS 
MA-MPC 

The template of MA-MPC used in this paper is 
as follows: 

1  Initialization:  generate a population of N 
chromosomes 
 2   Fitness: calculate the fitness of each chromosome 
 3  Create a new population: 
 a. Selection: select � chromosomes from the 

population (� ≥ 3) 

 b. Crossover: produce � offsprings from the 
�selected chromosomes 

 c. Local Search: apply local search to each 
offspring  

 d. Mutation: perform mutation on each 
offspring. 

 e.  Local search: apply local search to each 
offspring. 

4  Replace: replace the current population with the 
new population 
5  Evaluation: compute the objective vector of each 
chromosome   
6  Termination: Test if the termination condition is 
satisfied. If so stop.  If not, go to step 2 
 
IMPLEMENTATION DETAILS 
This presents relevant details concerning the 
implementation of MA-MPC 
 
Encoding Scheme 
The chosen encoding scheme is such that every 
chromosome codes a possible network, which 
corresponds to an individual in a set of feasible 
solutions of the problem. This set of feasible 
solutions constitutes a population. The chromosome 
is represented by a constant length integer string 
representation. The chromosome consists of two 
parts, the first part contains details of NE’s at the 
nodes and the second part consists of details of the 
links.  For example, if there are H types of nodes, 
then log 2 H bits are required to encode a node. 
Therefore the first part of the chromosome consists 
of   N .log 2 H bits, where N is the number of nodes 
in the network.  If a link exists between nodes 1 and 
2 then the first bit position in the link part is set to 1. 
Hence the second part of the chromosome consists of 
(N (N-1))/2 bits.  
 
Initial Population 
The two algorithms start by creating an initial 
population. There are two ways of generating initial 
population namely heuristic process and random 
process. A random process of generating initial 
population is adopted.  
 
Fitness Evaluation 
Fitness of a chromosome is evaluated based on 
principle of Pareto ranking. Pareto-rank of each 
individual is equal to one more than the number of 
individuals dominating it. All non-dominated 
individuals are assigned rank one. Network cost and 
average delay are used to evaluate the rank of an 
individual chromosome using the principle of Pareto 
dominance. The fitness of an individual is given by  

������� =  
�

�����             (12) 

 
Selection 
Roulette Wheel Selection Process is used. In roulette 
wheel, individuals are selected with a probability that 
is directly proportional to their fitness values i.e. an 
individual’s selection corresponds to a portion of a 
roulette wheel. The probabilities of selecting a parent 
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can be seen as spinning a roulette wheel with the size 
of the segment for each parent being proportional to 
its fitness. Obviously, those with the largest fitness 
(i.e. largest segment sizes) have more probability of 
being chosen. The fittest individual occupies the 
largest segment, whereas the least fit have 
correspondingly smaller segment within the roulette 
wheel. The circumference of the roulette wheel is the 
sum of all fitness values of the individuals. The 
proportional roulette wheel algorithm procedure is 
depicted by the algorithm below. Let  
��,��,… … … �� be fitness values of individuals 1, 2, 
………n. Then the selection probability, ��, for an 
individual �, is given as 

��  =  
��

∑ ��
�
���

                            (13) 

 
The template of the roulette wheel selection 
procedure is shown below.  
 
 
Procedure: Roulette Wheel Selection 
 while  population size < pop_size do 
 generate pop_size random number r 
 calculate cumulative fitness, total fitness 
(��) and sum of proportional      fitness (sum) 

Spin the wheel pop_size times 
if sum < r  then 
select the first chromosome 
else 
 select the jth chromosome 
Endif 

 Endwhile 
return chromosomes with fitness values 

proportional to the size of the selected wheel section 
End Procedure 

 
Crossover 
This operation operates on two(or more) 
chromosomes. In particular, for MA-MPC we used 3, 
5 and 7 chromosomes. To provide a basis for 
evaluating MA-MPC we also implemented crossover 
using 2 chromosomes, that is, traditional MA. The 
chromosomes are randomly selected based on the 
probability of crossover which is a randomly 
generated number ranging between 0 and 10. In this 
work, two-point crossover technique was 
implemented. The crossover probability (denoted by 
pC) is the probability of the number of offsprings 
produced in each generation to the population size 
(denoted by popSize). This probability controls the 
expected number (pC × popSize) of chromosomes to 
undergo the crossover operation. A high crossover 
probability is used here to allow exploration of more 
of the solution space, and reduces the chances of 
settling for a false optimum; but if this probability is 

too high, it results in the wastage of a lot of 
computation time in exploring unpromising regions 
of the solution space. 
 
Mutation 
This is the operation of randomly changing some of 
the bits of the chromosome representing an 
individual with a view to increasing the exploration 
of the solution space. 
 
Local Search  
The local search technique used is the hill climbing 
search algorithm. It is essentially an iteration that 
continuously proceeds in the direction of increasing 
quality value. The algorithm is as shown below 
 
While (termination condition is not satisfied) do 

New solution ← neighbours(Best solution); 
If new solution is better than actual solution 

then 
Best solution ← actual solution 

End if 
End while 
 
 
COMPUTATIONAL RESULTS AND 
DISCUSSION 
In this section, results of numerical experiments 
using 3 test problems - 10-node network design 
problem, 21-node network design problem and 36-
node network design problem (See Appendix) are 
reported. All experiments were performed on a HP 
630 NOTEBOOK PC with the following 
configuration:2.13GHz Processor Speed, 3.0GB 
RAM and 64 BIT OS and the implementation 
language is java. 
For MA-MPC, a total of 18 simulation runs were 
carried out for the 3 test problems (6 runs per 
problem instance, 2 runs per multi-parent instance 
implementation), noting the pareto-optimal front. For 
MA (crossover using 2 chromosomes), a total of 18 
simulation runs were equally carried out, noting the 
pareto-optimal front. The algorithms were 
implemented with the following parameters: 
Population size - 100 (250 for 36-node network 
design problem) 
Mutation probability – 0.02 
Number of parents 3, 5, 7 
Number of Node Type – 4 
The worst-ranked results (out of the pareto-optimal 
front) of MA and MA-MPC (3, 5 and 7 parents) are 
extracted and then re-ranked among the extracted 
results as shown in tables 1 to 3. Where two different 
results tie, the average of the two results is recorded

.  
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Table 1: Table of Results for 10-node network problem 
 
 
 
 
 
 
 

 
Table 2: Table of Results for 21-node network problem 

Number 
of Parents 

Cost AvDelay Rank CPU 
Time 

2 (MA) 1167.4 0.04 1 5665 
3 1354.3 0.07 4 2899 
5 1293.8 0.03 1 5390 
7 1350.4 0.03 2 990 

 
Table 3: Table of Results for 36-node network problem 

Number of 
Parents 

Cost AvDelay Rank CPU 
Time 

2 (MA) 1167.4 0.05 2 5673 
3 1258.9 0.055 3 4744 
5 1163.8 0.04 1 6455 
7 1350.4 0.06 4 990 

 
 
For 10-node network, it is evident from Table 1 that 
the use of multi-parent crossover will always 
enhance the efficiency of MA since MA has the 
highest CPU time (410 seconds). It could also be 
observed that quality of results is either degraded as 
it is the case with MA-MPC with 3 and 5 parents or 
not affected at all by multi-parent crossover as it is 
the case with MA-MPC with 7 parents. 
 
For 21-node network, Table 2 shows that multi-
parent crossover will reduce computation time of 
MA whenever it is used. Results quality is however 
either reduced or left unaffected by multi-parent 
crossover. 
 
In the case 36-node network, Table 3 depicts that 
multi-parent crossover can either improve or impede 
the efficiency of MA depending on the number of 
parents involved. Results also reveal that when the 
efficiency of MA is improved owing to the use of 
multi-parent crossover, its effectiveness is equally 
hampered and vice versa. The table also shows that 
multi-parent crossover will either improve solution 
quality as it is the case with MA-MPC (with 5 
parents) or degrade solution quality as it is the case 
with MA-MPC (with 3 and 7 parents)  
 

APPENDIX 
TEST DATA 

10-NODE NETWORK 
Node Details (Node Type, ��) =  { (01,42) ,(0, 78) 
,(10,33) ,(00,53) ,(01,42) ,(00,13) ,(10,9) ,(11,23) 
,(10,57) ,(10,25) } 

Link Details (���, ���, ����� , �������) = { 

(28,47,60,46) ,(20,43,90,72) ,(28,12,54,28) 
,(62,39,61,46) ,(42,23,24,9) 
,(42,30,16,14),(36,3,44,16) ,(40,18,75,54) 
,(10,36,29,8) ,(44,30,79,53) ,(44,45,54,35) 
,(36,18,66,51) ,(32,13,78,25) ,(14,16,96,54) ,(16,13, 
84,74) ,(21,28,76,17) ,(22,3,80,71) ,(3,39,55,54) 
,(47,12,66,62) ,(26,11,89,56) ,(13,42,77,47) 
,(46,22,45,39) ,(28,6,53,16) ,(5,38,89,57) ,(28,40,16, 
9) ,(48,49,49,40) ,(18,34,37,9) 
,(34,35,11,8),(11,41,39,31) ,(46,20,32,9) 
,(11,3,50,35) ,(70,1,54,41) ,(18,6,8,65) ,(35,42,91,66) 
,(14,33,10,26) ,(11,33,60,9) ,(43,16,79,49) 
,(20,43,88,56) ,(16,13,96,68) ,(6,30,91,67) 
,(34,49,16,7) ,(37,21,57,49) ,(20,12,79,62) 
,(33,46,81,70) ,(48,25,8,7)  } 
 
21-NODE NETWORK 
Node Details = { (01,42) ,(01,78) ,(10,33) ,(00,53) 
,(01,42) ,(00,13) ,(10,9) ,(11,23) ,(10,57) ,(10,25) 
,(01,53) ,(00,55) ,(01,11) ,(00,34) ,(10,33) ,(00,32) 
,(01,51) ,(10,38) , (10,15) ,(10,57) } 
Link Details = { (29 20 87 74) , (4 15 75 43) , (13 47 
50 35) , (41 16 69 52) , (32 25 72 54) , (43 42 89 63) 
, (31 1 75 21) , (29 38 76 70) , (1 33 39 11) , (16 37 
59 56) , (30 44 70 42) , (6 47 89 77) , (10 12 81 18) , 
(30 6 66 37) ,(26 3 80 54) ,(17 45 98 33) ,(12 10 49 
39) ,(32 9 61 31) ,(6 45 35 24) ,(14 42 67 24) ,(19 10 
89 31) ,(6 31 73 28) ,(31 19 29 22) ,(12 21 80 3) ,(49 
35 60 13) ,(15 30 95 39) ,(15 3 29 9) ,(4 2 82 64) ,(26 
27 27 12) ,(24 42 57 2) ,(25 46 68 66) ,(23 18 47 14) 
,(5 28 94 65) ,(30 18 44 26) ,(7 18 78 59) ,(20 44 80 
38) ,(33 29 30 7) ,(18 10 99 5) ,(25 43 18 2) ,(30 30 
94 13) ,(0 26 82 46) ,(22 0 87 52) ,(40 6 63 15) ,(10 

Number 
of Parents 

Cost AvDelay Rank CPU 
Time 

2 (MA) 619.6 0.05 1 410 
3 934.9 0.045 3 150 
5 758 0.03 2 142 
7 689.6 0.03 1 185 
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41 46 3) ,(25 45 35 10) ,(15 22 35 56) ,(46 28 32 5) 
,(13 8 31 47) ,(17 18 29 35) ,(5 24 89 70) ,(36 25 90 
76) ,(32 20 94 75) ,(40 34 84 73) ,(7 29 94 53) ,(39 
35 33 21) ,(37 42 57 4) ,(43 41 71 60) ,(20 28 85 45) 
,(36 17 51 19) ,(22 19 83 48) ,(44 17 28 19),(36 37 
40 19) ,(32 36 40 14) ,(4 12 88 78) ,(32 47 88 8) ,(48 
19 27 7) ,(26 7 73 60) ,(28 13 32 1) ,(20 21 47 19) 
,(41 28 84 54) ,(30 28 78 66) ,(20 38 92 67) ,(21 27 
88 27) ,(37 21 63 56) ,(27 22 57 35) ,(3 48 39 38) 
,(20 32 62 56) ,(17 33 74 60) ,(41 24 60 14) ,(11 4 93 
44) ,(20 44 75 74) ,(49 30 73 52) ,(39 16 64 57) ,(12 
40 62 54) ,(33 16 12 70) ,(43 20 83 48) ,(0 16 93 71) 
,(23 29 40 8) ,(2 35 81 36) ,(11 38 78 62) ,(7 11 93 
63) ,(0 33 94 74) ,(9 48 88 54) ,(9 46 86 69) ,(15 44 
87 32) ,(12 18 51 43) ,(16 24 79 43) ,(28 8 68 7) ,(41 
49 67 27) ,(29 24 78 60) ,(48 5 63 12) ,(18 22 23 1) 
,(22 31 17 7) ,(14 45 58 4) ,(3 45 73 64) ,(16 28 89 
71) ,(5 8 59 26) ,(16 49 65 50) ,(6 25 39 9) ,(48 35 76 
73) ,(1 30 35 63) ,(19 29 82 34) ,(35 27 57 20) ,(43 
10 73 70) ,(17 28 25 15) ,(44 30 14 3) ,(5 20 63 12) 
,(19 40 46 59) ,(8 30 82 50) ,(7 9 5 54) ,(7 10 74 66) 
,(30 14 18 55) ,(7 5 83 15) ,(30 33 69 64) ,(15 10 64 
61) ,(33 11 14 2) ,(18 31 79 75) ,(2 38 66 0) ,(47 0 29 
17) ,(20 29 52 48) ,(46 38 10 4) ,(5 45 75 40) ,(39 17 
83 66) ,(18 3 94 4) ,(30 25 60 43) ,(31 32 84 71) ,(34 
45 74 74) ,(5 19 68 42) ,(27 48 72 69) ,(13 6 45 33) 
,(20 17 37 23) ,(41 26 97 30) ,(34 42 54 22) ,(5 42 63 
47) ,(39 26 71 47) ,(18 28 20 15) ,(18 4 70 10) ,(16 
12 87 32) ,(1 13 97 11) ,(27 39 71 62) ,(41 14 94 59) 
,(1 33 63 57) ,(12 2 70 43) ,(37 4 77 51) ,(25 16 85 
21) ,(8 17 40 25) ,(6 11 87 42) ,(48 47 97 21) ,(28 39 
42 21) ,(18 21 19 15) ,(46 12 99 51) ,(1 27 99 76) ,(8 
31 21 11) ,(6 13 91 36) ,(27 17 69 21) ,(18 16 80 38) 
,(42 20 92 19) ,(38 33 66 33) ,(47 5 57 27) ,(39 3 45 
19) ,(30 4 88 78) ,(39 14 60 30) ,(28 40 92 41) ,(2 48 
63 22) ,(17 10 83 42) ,(30 17 71 50) ,(14 20 66 79) 
,(10 27 83 65) ,(43 27 89 40) ,(5 2 97 78) ,(8 13 67 
57) ,(42 21 68 47) ,(5 20 84 23) ,(41 28 61 51) ,(41 
38 70 31) ,(8 48 80 59) ,(9 10 97 25) ,(40 38 86 55) 
,(31 20 65 60) ,(39 39 41 40) ,(22 40 95 77) ,(44 16 
72 56) ,(21 45 88 53) ,(29 2 74 37) ,(21 45 60 40) ,(4 
37 37 7) ,(12 43 48 38) ,(3 43 63 48) ,(46 25 63 43) 
,(4 31 53 51) ,(18 9 70 22) ,(47 9 76 70) ,(38 13 75 
44) ,(20 49 83 52) ,(21 15 90 25) ,(9 45 66 49) ,(42 
40 55 0) ,(1 37 80 27) ,(40 8 88 28) ,(9 27 73 38) } 
 
CONCLUSION 
In this paper, the impact of multi-parent crossover on 
a Memetic Algorithm applied to solve real-life 
problem is investigated. In particular, MA-MPC is 
designed and tested for a multi-objective network 
design problem whose size ranges from small (10-
none network), medium (21-node network) to large 
(36-node network). The results obtained show that, 
while multi-parent crossover will certainly improve 
the efficiency of MA for small and medium 
networks, it is not the case for large networks. For 
large networks, multi-parent crossover will either 
improve or impede the efficiency of MA depending 
on the number of parents used. 
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