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 This paper provides a comprehensive review of induction motor speed control 

techniques, highlighting the evolution and current methodologies employed in the 

field. It discusses various control strategies, including fuzzy logic and vector 

control, emphasizing their efficiency and adaptability under different operational 

conditions. The challenges and limitations faced in controlling induction motor 

speed are also examined, alongside future recommendations for enhancing 

control methodologies.  
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INTRODUCTION 

Until a few decades ago, variable speed drives were constrained by several limitations, including suboptimal 

efficiencies, substantial spatial requirements, reduced operational speeds, and so on. Now, with the integration of 

innovative technologies and IoT capabilities, these systems can be monitored and adjusted in real-time to further 

optimize their performance and adaptability to changing operational conditions (Panduman et al., 2022).  

Furthermore, as sectors emphasize sustainability, the incorporation of these technologies supports worldwide 

initiatives to lessen carbon emissions and foster environmentally friendly practices (Sajid et al., 2021). 

Nevertheless, the emergence of power electronic devices such as Power Metal Oxide Semiconductor Field Effect 

Transistors (MOSFETs) and Insulated Gate Bipolar Transistors (IGBTs), in conjunction with the introduction of 

advanced Programmable Logic Controllers (PLCs), has radically transformed the landscape (Hallam, 2023). 

Presently, variable speed drive systems are characterized not only by their compact dimensions but also by their 

remarkable efficiency, exceptional reliability, and their capacity to satisfy the rigorous demands of various 

contemporary industrial sectors (Shakweh, 2018). Induction motors are extensively utilized across diverse 

applications, encompassing residential, industrial, commercial, and utility sectors. Single-phase induction motors 

are frequently employed in both domestic and industrial apparatus (Solomon, 2021). The principal advantage of 

these motors is their capability to operate on a single-phase power supply (Zhang and Zhang, 2020). It is 
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extensively employed in industrial machinery as a substitute for direct current machines due to its capability to 

attain a rapid torque response (Cai et al., 2021). This adaptability allows for enhanced efficiency and reliability 

in various applications, making these motors a preferred choice in many sectors. Torque response exhibits a high 

degree of sensitivity to magnetic flux and can be readily altered through variations in operational parameters. The 

identification of precise parameters is critically significant in achieving the intended performance outcomes (Petit 

et al., 2019). 

Speed Control 

The diverse methodologies for the regulation of induction motor velocity encompass pole variation, stator voltage 

modulation, supply frequency regulation, rotor resistance manipulation, scalar control mechanisms, and vector 

control techniques (Htun and Aung, 2019). The synchronous velocity of an electric motor is contingent upon two 

principal parameters. The first parameter pertains to the magnetic poles of the stator, while the second is associated 

with the frequency of the power supply. The synchronous velocity is articulated in Equation 1 (Takahashi et al., 

2020). 

                                                           𝑁𝑠 =
120𝑓

𝑝
                (1) 

where, f = Frequency in Hz, p= Number of poles 

The angular velocity of the rotor and the velocity of the rotating magnetic field in an induction motor represent 

two distinct phenomena (Masala et al., 2022). The rotor synchronous speed exceeds the rotor actual speed, with 

the percentage difference termed as motor slip (Credo et al., 2019). 

                                                           𝑠 =  
𝑁𝑠−𝑁𝑟

𝑁𝑟
       (2) 

where, Ns = Synchronous speed, Nr = Rotor speed (Gallardo et al., 2022).  

                                                           𝑁𝑠 = 𝑘 
𝑓

𝑝
       (3) 

Where k is a constant, as shown in equation 3, the synchronous speed of an induction motor is directly proportional 

to the supply frequency and inversely proportional to the number of stator poles (Rahman, 2016).  Therefore, the 

most effective approach for controlling induction motor speed requires modification of the supply frequency, 

owing to the predetermined number of stator poles established by design (Wang et al., 2015). 

 Review of Control Platforms 

Induction motors are essential in industry, prompting the development of various control methods to improve 

performance (Fahassa et al., 2022). Scalar control, vector control, direct torque control, sliding mode control, and 

adaptive controls present distinct benefits and difficulties that can significantly impact the performance and 

efficiency of electric motor systems (Ivanov et al., 2016). These methods are often selected based on the specific 

application requirements, such as speed response, torque ripple, and overall system complexity. These methods 

allow for precise manipulation of motor characteristics, enabling improved efficiency, responsiveness, and overall 

operational effectiveness in diverse settings (Guo et al., 2018; Mertens et al., 2019). 
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Scalar Control is the simplest method, regulating speed by adjusting voltage and frequency. However, it exhibits 

insufficient precision in torque regulation and dynamic response, rendering it inappropriate for high-performance 

applications (Ötkun et al., 2022; Srivastav, 2023). Vector control, or Field-Oriented Control (FOC), enables 

separate management of torque and flux, enhancing dynamic performance and efficiency (Jauhar et al., 2022). It 

is widely used in industrial settings due to its ability to provide smooth torque and speed tracking (Sohail and Ha, 

2023; Rosaiah and Kalagotla, 2023). Direct Torque Control (DTC) offers rapid torque response and is effective 

in handling large speed changes. However, it can suffer from torque variation, which may affect performance 

under certain conditions (Hazzazet et al., 2021; Sohail and Ha, 2023). Sliding mode control exhibits resilience to 

parameter fluctuations and external perturbations, making it suitable for systems with high uncertainty (Ghabi, 

2018). It ensures stability and performance but can introduce chattering effects (Srivastav, 2023). Adaptive 

control adjusts parameters in real-time to maintain performance despite changes in system dynamics (Qi et al., 

2019). This method is beneficial in applications where load conditions vary significantly (Ayesha and Memon, 

2022). While these control methods enhance induction motor performance, their effectiveness can vary based on 

application requirements and operational conditions (Fahassa et al., 2022). 

In comparison to vector or field-oriented controls, the implementation of the scalar-controlled drive is notably 

less complex, albeit with reduced performance outcomes (Swami and Jain, 2021). This control method provides 

limited speed accuracy, especially in the low-speed range and poor dynamic torque response (Swami and Jain, 

2021). However, it remains a cost-effective solution for simpler applications where precision is not critical. In 

such cases, the trade-off between cost and performance often dictates the choice of control strategy, making scalar 

control a viable option for many industrial settings (Vazan and Cervenanska, 2018). Many researchers have 

explored fuzzy logic in the context of online efficiency management for induction motor drives controlled 

indirectly (Zidani et al., 2019). 

Advancement in the control techniques for induction motor (IM) drives in electric vehicles (EVs) was 

demonstrated by implementing a fuzzy controller through a dynamic backpropagation algorithm using an 

Adaptive Neuro-Fuzzy Inference System (ANFIS) (Joshi and Pius, 2020). The work emphasizes the efficiency 

and adaptability of fuzzy logic in managing motor control, particularly under varying operational conditions. The 

simulated results from ANFIS controllers demonstrate superior performance compared to traditional controllers, 

validating their effectiveness in real-world scenarios (Hasan et al., 2023). The implementation of these techniques 

on DSP hardware further confirms their practical applicability and reliability in EV systems (Huang et al., 2023). 

However, challenges remain in optimizing these systems for diverse driving conditions and ensuring their 

scalability in commercial applications (Becker et al., 2020; Christmann et al., 2023) 

Abderazak and Farid (2016) introduced the Fuzzy-SMC-PI approach for regulating the flux and velocity of an 

induction motor. The Fuzzy-SMC-PI integrates Sliding Mode Control and PI control via fuzzy logic; however, it 

suffers from chattering during switching (Qi et al. 2021). Ostermeyer et al. (2020) employed a fuzzy logic 

controller to modify the boundary layer width based on speed error. A fuzzy sliding mode controller (FSMC) for 

the regulation of induction motor positioning was developed, with notable advantages. The significant drawback 

of this control is its reliance on equivalent control and system parameters. This dependency can lead to 

performance issues under varying operational conditions (Bennassar et al., 2022).               
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Li et al. (2023) presented a methodology for the identification of time series models, wherein a substantial array 

of systems characterized by significant variations in parameters across different operational states can be 

effectively recognized through the application of Fuzzy Neural Networks (FNN).  The proposed approach 

addresses the limitations of conventional linear system identification techniques, which function optimally only 

within specific conditions, by offering a comprehensive dynamic characterization that facilitates subsequent 

system control (Mauroy and Goncalves, 2016), the research yielded contributions and addressed numerous issues; 

however, limitations exist regarding response settling time and rule base selection (Naus and Jeuring, 2017). 

Notwithstanding these constraints, persistent scholarly inquiry remains committed to the enhancement of these 

methodologies, indicating that progress in algorithmic development, particularly those employing unscented 

Kalman filters, has the potential to significantly augment both the efficacy and applicability of TS fuzzy models 

(Rodriguez and Baruch, 2017; Vafam and et al., 2018). 

Zuhair et al. (2021); Wu et al. (2022) developed a neural network-based computational speed controller that 

predicts speed and produces a reference voltage to adjust the armature terminal voltage.  During the progression 

of this work, a tri-layer neural network framework was employed to improve motor velocity modulation, and the 

resulting model exhibited enhanced efficacy in comparison to traditional control paradigms. Neural networks can 

learn and adapt to the nonlinear characteristics of motors, enhancing control accuracy under varying conditions 

(You et al., 2021). Although Mahmood's discoveries exhibit considerable promise, it is crucial to take into account 

the potential obstacles associated with the deployment of neural networks, including the requirement for 

substantial training datasets and computational capabilities, which may constrain their relevance in certain 

contexts (Openja et al., 2022; Karner et al., 2022). 

Cai et. al. (2020) presented findings on innovations in electric motors and powertrains for new energy vehicles.  

The permanent magnet synchronous motor exhibits superior performance compared to direct current, induction, 

and synchronous motors (Kumar and Murmu, 2020), Silicon Carbide Metal-Oxide-Semiconductor Field-Effect 

Transistor (SiC-MOSFET) converters exhibit superior efficiency and driving range compared to Si-based IGBT 

converters (Loncarski et al., 2020). Vaibhavi and Shushil (2018) introduce a Direct Torque Control (DTC) 

methodology for three-phase induction motors that employs a Fuzzy Logic Controller (FLC) as a viable substitute 

for the conventional Proportional-Integral (PI) controller (Pandey, 2020). In this work, the approach for regulating 

real-time flux and torque values through optimal inverter switching based on hysteresis bands is a significant 

advancement in motor control strategies (Jiang and Zhou, 2016; Kadum, 2020). This approach ensures that the 

errors in flux and torque are maintained within predefined limits, enhancing performance and efficiency (Yin et 

al., 2019). Moreover, the integration of FLC allows for adaptive control, which can adjust to varying operating 

conditions and load disturbances, further improving the robustness of the system (Rehiara et al., 2017). Yao et al. 

(2016) proposed a method in which the implementation of FLC mitigated torque and flux ripples, enhancing 

response dynamics. Furthermore, it diminished the settling time of the system (Tokui et al., 2021; Manivasagam 

et al., 2024). The hysteresis-based control methods provide significant advantages; however, they may also 

introduce complexities in implementation and require careful tuning to optimize performance across varying 

operational conditions (Behloul et al., 2022; Haq and Okumus, 2020). 

Abdullah et al. (2022) proposed a cost-effective digital RPM meter. It monitors and regulates motor speed; the 

system utilizes Bluetooth technology via mobile devices. Induction motors operate on alternating current (AC) 
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lines, with power intake influencing rotational speed (Afzeri et al., 2023; Paramo-Balsa et al., 2021). The AC 

driver circuitry enables modulation of AC line power for induction motor speed adjustment.  

An Atmega family microcontroller generates PWM signals for an opto-coupler, which actuates the TRIAC, 

supplying power to the induction motor (Bahade et al., 2024). The microcontroller receives instructions via a 

mobile phone connection to the system. The mobile phone sends DTMF signals to the system, which the system 

recognizes and responds to appropriately (Rahul et al., 2022; Kumbhar, 2014). A button increases induction motor 

speed, another alters direction, and a third decreases speed (Rakib et al., 2022). This ongoing research illustrates 

the operational principles of a Digital Tachometer. To facilitate the observation of motor velocity, it employs a 

Digital Tachometer framework as a preliminary model. Furthermore, it enhances security measures and simplifies 

the process of modifying motor speed (Ehikhamenle and Omijeh, 2017). The integration of these components 

ensures efficient operation and enhances the overall performance of the motor control (Sakai and Hideaki, 2020) 

 Ankarao et al. (2017) presented a novel robust control scheme utilizing three first-order auto-disturbance 

rejection controllers for induction motor speed control. The dynamic performance of the induction motor is 

compared using ADRC and FUZZY controllers ("An Implementation of Soft Computing Approach," 2022). 

Conventional PI controllers face issues due to induction motor parameter mismatch or temporal variation (Alawan 

et al., 2019). Furthermore, the occurrence of load disturbances is frequently accompanied by an extensive 

recovery duration (dos Santos et al., 2021). This extended recovery duration may result in elevated operational 

expenditures and diminished efficiency within systems that depend on stable performance (O’Connell, 2017). In 

these instances, the rotor flux estimator necessitates increased memory and runtime (Mahsahirun et al., 2020). A 

novel control strategy employing three first-order auto disturbance rejection controllers is implemented for robust 

speed regulation of induction motor drives (Chalawane et al., 2017). The induction motor's speed variations are 

analyzed through adjustments in parameters such as rotor resistance and load conditions from no load to full load 

(Cherifi and Miloud, 2017). The rotor resistance is adjusted incrementally utilizing the ADRC and fuzzy 

controllers (Chacko et al., 2016; Al Zabin and Ismael, 2019). The system's operational performance is analyzed 

across multiple scenarios to evaluate the success of the suggested control strategy in ensuring speed and stability 

(Liu et al., 2023). The results indicate that the ADRC controller outperforms the fuzzy controller in terms of 

response time and stability, particularly under dynamic load conditions (El-Sehiemy, 2022). The results indicate 

that the proposed control strategy significantly enhances the system's ability to adapt to disturbances, ensuring 

consistent performance across a range of operational scenarios (Jafari and Ioannou, 2022). However, the analysis 

reveals that the fuzzy controller outperforms the ADRC controller in terms of response time and precision, 

particularly under dynamic load conditions (Mansouri et al., 2020). 

CONCLUSION  

The review of various control techniques for induction motors reveals a spectrum of advantages and limitations. 

Although sophisticated techniques such as Active Disturbance Rejection Control (ADRC) exhibit potential in 

enhancing response times and system stability, conventional methodologies, including Proportional Integral (PI) 

control and scalar control, continue to be of considerable importance in less complex applications owing to their 

straightforward implementation and economic efficiency. The paper emphasizes the need for ongoing research to 

address the limitations of existing methods, particularly in enhancing adaptability and performance under dynamic 

conditions.  
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Future Recommendation  

Future developments should focus on integrating smart technologies and advanced algorithms to optimize 

induction motor control, ensuring they meet the evolving demands of industrial applications while promoting 

sustainability. 
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